Open Access
Issue
E3S Web Conf.
Volume 313, 2021
19th International Stirling Engine Conference (ISEC 2021)
Article Number 04001
Number of page(s) 12
Section Novel Designs of Drive Mechanisms and Configurations
DOI https://doi.org/10.1051/e3sconf/202131304001
Published online 22 October 2021
  1. IEA, Key World Energy Statistics 2020, Paris, 2020. [Online]. Available: // www.iea.org/reports/key-world-energy-statistics-2020. [Google Scholar]
  2. T. Finkelstein, A. J. Organ, Air engines (London: Professional Engineering Publishing Ltd, 2001). [Google Scholar]
  3. C. D. West, The Fluidyne heat engine (Harwell, UK, 1971). [Google Scholar]
  4. C. D. West, Liquid Piston Stirling Engines (Van Nostrand Reinhood Company Inc, 1983). [Google Scholar]
  5. C. D. West, Dynamic analysis of the Fluidyne, Proceedings of the 18th Intersociety Energy Conversion Engineering Conference (1983). [Google Scholar]
  6. O. R. Fauvel, C. D. West, Excitation Of Displacer Motion In A Fluidyne: Analysis And Experiment, Proceedings of the 25th Intersociety Energy Conversion Engineering Conference, 5 336–341, (1990) doi: 10.1109/IECEC.1990.747973. [CrossRef] [Google Scholar]
  7. H. G. Elrod, The Fluidyne heat engine: how to build one, how it works, Conference report, USA (1974). [Google Scholar]
  8. A. D. Geisow, The onset of oscillations in a lossless Fluidyne, Harwell, UK (1976). [Google Scholar]
  9. C. W. Stammers, The operation of the Fluidyne heat engine at low differential temperatures, J. Sound Vib. 63 507–516 (1979) doi: 10.1016/0022-460X(79)90826-5. [CrossRef] [Google Scholar]
  10. C. D. West and R. B. Pandey, Laboratory prototype Fluidyne water pump, Harwell, UK (1981). [Online]. Available: https://www.osti.gov/biblio/5052839. [Google Scholar]
  11. R. Ahmadi, H. Jokar, and M. Motamedi, A solar pressurizable liquid piston Stirling engine: Part 2, optimization and development, Energy 164 1200–1215 (2018) doi: 10.1016/j.energy.2018.08.197. [CrossRef] [Google Scholar]
  12. J. W. Mason, J. W. Stevens, Design and construction of a solar-powered Fluidyne test bed, International Mechanical Engineering Congress & Exposition IMECE2, (2011). [Google Scholar]
  13. Y. W. Wong, K. Sumathy, Solar thermal water pumping systems: a review, Renew. Sustain. Energy Rev. 3 185–217(1999) doi: 10.1016/S1364-0321(98)00018-5. [CrossRef] [Google Scholar]
  14. G. C. Bell, Solar powered liquid piston Stirling cycle irrigation pump, Research Report, Center for Environmental Research and Development, New Mexico Univ., USA (1979). [Google Scholar]
  15. J. W. Mason, J. W. Stevens, Characterization of a solar-powered Fluidyne test bed, Sustain. Energy Technol. Assessments 8 1–8 (2014) doi: 10.1016/j.seta.2014.06.007. [CrossRef] [Google Scholar]
  16. H. M. Goudarzi, M. Yarahmadi, M. B. Shafii, Design and construction of a two-phase fluid piston engine based on the structure of Fluidyne, Energy 127 660–670, (2017) doi: 10.1016/j.energy.2017.03.035. [CrossRef] [Google Scholar]
  17. K. Wang, S. R. Sanders, S. Dubey, F. H. Choo, F. Duan, Stirling cycle engines for recovering low and moderate temperature heat: A review, Renew. Sustain. Energy Rev. 62 89–108 (2016) doi: 10.1016/j.rser.2016.04.031. [CrossRef] [Google Scholar]
  18. T. C. B. Smith, Power dense thermofluidic oscillators for high load applications, 2nd Int. Energy Convers. Eng. Conf. 3 1889–1903 (2004) doi: 10.2514/6.2004-5758. [Google Scholar]
  19. C. N. Markides, T. C. B. Smith, A dynamic model for the efficiency optimization of an oscillatory low grade heat engine, Energy 36 6967–6980 (2011) doi: 10.1016/j.energy.2011.08.051. [CrossRef] [Google Scholar]
  20. R. Solanki, A. Galindo, C. N. Markides, Dynamic modelling of a two-phase thermofluidic oscillator for efficient low grade heat utilization: Effect of fluid inertia, Appl. Energy 89 156–163 (2012) doi: 10.1016/j.apenergy.2011.01.007. [CrossRef] [Google Scholar]
  21. C. N. Markides, A. Osuolale, R. Solanki, G. B. V. Stan, Nonlinear heat transfer processes in a two-phase thermofluidic oscillator, Appl. Energy 104 958–977 (2013) doi: 10.1016/j.apenergy.2012.11.056. [CrossRef] [Google Scholar]
  22. C. N. Markides, R. Solanki, A. Galindo, Working fluid selection for a two-phase thermofluidic oscillator: Effect of thermodynamic properties, Appl. Energy 124 167–185 (2014) doi: 10.1016/j.apenergy.2014.02.042. [CrossRef] [Google Scholar]
  23. E. Orda, K. Mahkamov, Development of ‘low-tech’ solar thermal water pumps for use in developing countries, J. Sol. Energy Eng. Trans. ASME 126 768–773 (2004) doi: 10.1115/1.1668015. [CrossRef] [Google Scholar]
  24. K. Mahkamov, E. Orda, B. Belgasim, I. Makhkamova, A novel small dynamic solar thermal desalination plant with a fluid piston converter, Appl. Energy 156 715–726, (2015) doi: 10.1016/j.apenergy.2015.07.016. [CrossRef] [Google Scholar]
  25. R. P. Klüppel, J. M. M. Gurgel, Thermodynamic cycle of a liquid piston pump, Renew. Energy 13 261–268 (1998) doi: 10.1016/S0960-1481(97)00049-9. [CrossRef] [Google Scholar]
  26. H. Jokar, A. R. Tavakolpour-Saleh, A novel solar-powered active low temperature differential Stirling pump, Renew. Energy 81 319–337 (2015) doi: 10.1016/j.renene.2015.03.041. [CrossRef] [Google Scholar]
  27. M. Ndamé Ngangué, P. Stouffs, Dynamic simulation of an original Joule cycle liquid pistons hot air Ericsson engine, Energy 190 (2020), doi: 10.1016/j.energy.2019.116293. [Google Scholar]
  28. R. Chouder, A. Benabdesselam, P. Stouffs, Modélisation dynamique « intracycle » d’un moteur à air chaud ERICSSON à piston liquide, Actes du Congrès de la Société Française de Thermique 125 (2020) doi: 10.25855/SFT2020-125 [Google Scholar]
  29. R. Chouder, P. Stouffs, A. Benabdesselam, Dynamic Modeling of a Free Liquid Piston Ericsson Engine (FLPEE), Proceedings of the ECOS conference 203 (2021). [Google Scholar]
  30. R. P. Pescara, Motor compressor apparatus, Patent N° 1 657 641 (1928). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.