Open Access
Issue
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
Article Number 04001
Number of page(s) 5
Section Geomatics, Remote Sensing and Modelling
DOI https://doi.org/10.1051/e3sconf/202131404001
Published online 26 October 2021
  1. I.J. Barton, Satellite-derived sea surface temperatures: A comparison between operational, theoretical and experimental algorithms. J. Appl. Meteorol. 31, pp. 432–442(1992) [Google Scholar]
  2. C. Coll, V. Caselles, J.M. Galve, Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Rem. Sens. Environ. 97 pp. 288-300 (2005), doi.org/10.1016/j.rse.2005.05.007 [CrossRef] [Google Scholar]
  3. P. Dash, F. Göttsche, M., F. S. Olesen, H. Fischer, Land surface temperature and emissivity estimation from passive sensor data: Theory and practice—current trends. Inter. J. of Remote Sensing, 23, pp. 2563-2594 (2002) [CrossRef] [Google Scholar]
  4. J.P. Lagouarde, Y. H. Kerr, Y. Brunet, An experimental study of angular effects on surface temperature for various plant canopies and bare soils, Agric. Forest Meteorol 77: 167–190 (1995). [CrossRef] [Google Scholar]
  5. Z.L. Li, B. Tang, , H. Wu, Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment 131, pp 14–37 (2013). [CrossRef] [Google Scholar]
  6. Z. Qin, and A. Karnieli, Progress in remote sensing of land surface temperature and ground emissivity using NOAA-AVHRR data. Inter. J. of Rem. Sens 20: 2367–2393 (1999). [CrossRef] [Google Scholar]
  7. T.J. Schmugge, W.P. Kustas, J.C. Ritchie, T. J. Jackson and Al Rango, Remote sensing in hydrology. Advances in Water Resources, 25 (12), pp. 1367-1385 (2002). [CrossRef] [Google Scholar]
  8. J. Zhou, J., Zhang, Li., D. Hu, and W. Zhan, Intercomparaison of methods for estimating land surface temperature from Landsat-5 TM image in an arid region with low water vapor in the .atmosphere. International Journal of Remote Sensing 33 (8), pp. 2582–2602 (2012). [CrossRef] [Google Scholar]
  9. V.V. Serafini, Estimation of the evapotranspiration using surface and satellite data. International journal of remote sensing, 8, pp 1547–1562 (1987). [CrossRef] [Google Scholar]
  10. J.C. Price, The potential of Remotely Sensed Thermal Infrared data to Infer Surface Soil Moisture and Evaporation. Water Resources, 16, pp 787–795 (1990). [Google Scholar]
  11. A. Karnieli, N. Agam, R. T. Pinker, M. Anderson, M. L. Imhoff, G. G. Gutman, N. Panov & A. Goldberg, Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. Journal of Climate 23 (3): pp. 618–633 (2010). doi.org/10.1175/2009JCLI2900.1 [CrossRef] [Google Scholar]
  12. T.J. Schmugge, J.C. André, Land Surface Evaporation: Measurements and Parameterization. Springer-Verlag; New York. (1991) [CrossRef] [Google Scholar]
  13. M. Mohan, Climate change: evaluation of ecological restoration of Delhi ridge using remote sensing and GIS technologies. International Archives of Photogrammetry and Remote Sensing, vol 33, pp. 886–894 (2000). [Google Scholar]
  14. J. J. Feddema, K. W. Oleson, G. B. Bonan, L. O. Mearns, L. E. Buja, G. A. Meehl, et W. M. Washington, The importance of land-cover change in simulating future climates. Science, pp. 1674–1678 (2005). [CrossRef] [PubMed] [Google Scholar]
  15. H. Yagoub., Cartographie et suivi du couvert végétal des zones semi-arides par l’imagerie satellitaire. Doctorat Es-Science, Université des Sciences et de la Technologie d’Oran Mohamed Boudiaf, Faculté de Physique, 150p (2015). [Google Scholar]
  16. USGS, Landsat collection 1 level 1 product definition. EROS Sioux Falls, South Dakota, USA, 32 p (2019a). [Google Scholar]
  17. USGS, Landsat 8 (L8) Data Users Handbook Version 5.0. EROS Sioux Falls, South (2019b) [Google Scholar]
  18. D.A. Artis, W.H. Carnahan, Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 12, pp. 313–329 (1982) [Google Scholar]
  19. S. Bontemps, Cartographie et interprétation de l’évolution du développement territorial par télédétection spatiale au Cambodge. Mémoire de fin d’études de la faculté des Sciences Agronomiques, UCL, Louvain-La-Neuve, 111 p (2004). [Google Scholar]
  20. F. Bonn, Précis de télédétection, Volume 2 – Application thématiques. Presses de l’Université du Québec/ AUPELF, 633 p (1996). [Google Scholar]
  21. M. El Garouani, M. Amyay, A. Lahrach and H.J Oulidi., Land Surface Temperature in Response to Land Use/Cover Change Based on Remote Sensing Data and GIS Techniques: Application to Saïss Plain, Morocco. Journal of Ecological Engineering, 22(7), pp. 100–112 (2021). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.