Open Access
Issue
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
Article Number 04008
Number of page(s) 5
Section Geomatics, Remote Sensing and Modelling
DOI https://doi.org/10.1051/e3sconf/202131404008
Published online 26 October 2021
  1. Fedon, C., et al., Application of deterministic sampling methods for uncertainty quantification in manufacturing tolerances in neutron physics. 2021. 373: p. 111023. [Google Scholar]
  2. Yu, H., et al., A probabilistic load flow calculation method with Latin hypercube sampling. 2009. 33(21): p. 32-35. [Google Scholar]
  3. Helton, J.C., et al., A comparison of uncertainty and sensitivity analysis results obtained with random and Latin hypercube sampling. 2005. 89(3): p. 305-330. [Google Scholar]
  4. Scott, S.N., et al., Validation of heat transfer, thermal decomposition, and container pressurization of polyurethane foam using mean value and latin hypercube sampling approaches. 2016. 52(1): p. 121-147. [Google Scholar]
  5. Chaudhary, N., et al., Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling. 2016. 12(3): p. 994-1005. [Google Scholar]
  6. Lu, Y., et al., Risk analysis of African swine fever in Poland based on spatio-temporal pattern and Latin hypercube sampling, 2014–2017. 2019. 15(1): p. 1-12. [Google Scholar]
  7. Husslage, B.G., et al., Space-filling Latin hypercube designs for computer experiments. 2011. 12(4): p. 611-630. [Google Scholar]
  8. Wang, G.G. and S. Shan, Review of metamodeling techniques in support of engineering design optimization. 2007. [Google Scholar]
  9. Olsson, A., G. Sandberg, and O.J.S.S. Dahlblom, On Latin hypercube sampling for structural reliability analysis. 2003. 25(1): p. 47-68. [Google Scholar]
  10. Helton, J.C., F.J.J.R.E. Davis, and S. Safety, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. 2003. 81(1): p. 23-69. [Google Scholar]
  11. Manache, G., C.S.J.J.O.W.R.P. Melching, and Management, Sensitivity analysis of a waterquality model using Latin hypercube sampling. 2004. 130(3): p. 232-242. [Google Scholar]
  12. Pang, M., et al., Uncertainty and Sensitivity Analysis of Input Conditions in a Large Shallow Lake Based on the Latin Hypercube Sampling and Morris Methods. 2021. 13(13): p. 1861. [Google Scholar]
  13. Saleem, M., A.J.C. Hosoda, and B. Materials, Latin Hypercube Sensitivity Analysis and Nondestructive Test to Evaluate the Pull-out Strength of Steel Anchor Bolts Embedded in Concrete. 2021. 290: p. 123-256. [Google Scholar]
  14. Ye, X., et al. Approximate Modeling of Gear Torque of Permanent Magnet Synchronous Motor Based on Improved Latin Hypercube Sampling. in The Proceedings of the 9th Frontier Academic Forum of Electrical Engineering. 2021. Springer. [Google Scholar]
  15. Tong, C.J.R.E. and S. Safety, Refinement strategies for stratified sampling methods. 2006. 91(10-11): p. 1257-1265. [Google Scholar]
  16. Sallaberry, C.J., et al., Extension of Latin hypercube samples with correlated variables. 2008. 93(7): p. 1047-1059. [Google Scholar]
  17. Qian, P.Z.J.J.O.T.A.S.A., Sliced Latin hypercube designs. 2012. 107(497): p. 393-399. [Google Scholar]
  18. He, X. and P.Z.J.B. Qian, Nested orthogonal array-based Latin hypercube designs. 2011. 98(3): p. 721-731. [Google Scholar]
  19. Williamson, D.J.E., Exploratory ensemble designs for environmental models using k‐extended Latin Hypercubes. 2015. 26(4): p. 268-283. [Google Scholar]
  20. Vorechovský, M.J.P., Hierarchical subset latin hypercube sampling. 2006. 6: p. 285-98. [Google Scholar]
  21. Vorechovský, M. Extension of sample size in Latin hypercube sampling–methodology and software. in Proceedings of the 3rd Symposium on Life-Cycle and Sustainability of Civil Infrastructure Systems, Vienna, Austria, IALCCE, Vienna, BOKU University, Vienna: CRC Press/Balkema. 2012. [Google Scholar]
  22. Vořechovský, M.J.C.A.C. and I. Engineering, Hierarchical refinement of latin hypercube samples. 2015. 30(5): p. 394-411. [Google Scholar]
  23. De Marsily, G., Quantitative hydrogeology. 1986, Paris School of Mines, Fontainebleau. [Google Scholar]
  24. Atangana, A. and D.J.J.O.E.M. Baleanu, CaputoFabrizio derivative applied to groundwater flow within confined aquifer. 2017. 143(5): p. D4016005. [Google Scholar]
  25. Tolikas, P.K., E.G. Sidiropoulos, and C.D.J.W.R.R. Tzimopoulos, A simple analytical solution for the Boussinesq one‐dimensional groundwater flow equation. 1984. 20(1): p. 24-28. [Google Scholar]
  26. Neuman, S.P. and Y.K.J.W.R.R. Zhang, A quasi‐ linear theory of non‐Fickian and Fickian subsurface dispersion: 1. Theoretical analysis with application to isotropic media. 1990. 26(5): p. 887-902. [Google Scholar]
  27. Kitanidis, P.K., Introduction to geostatistics: applications in hydrogeology. 1997: Cambridge university press. [Google Scholar]
  28. Draoui, Y., et al., Quantification of Surface WaterGroundwater Exchanges by GIS Coupled with Experimental Gauging in an Alluvial Environment. [Google Scholar]
  29. El Mansouri, B. and L.J.P.O.T.I.A.O.H.S. El Mezouary, Enhancement of groundwater potential by aquifer artificial recharge techniques: an adaptation to climate change. 2015. 366: p. 155-156. [Google Scholar]
  30. El Mezouary, L., Modélisation mathématique et numérique des phénomènes d’écoulements et de transport de pollutions dans les milieux poreux: application a l’aquifère alluvial de la rivière de Magra, Italie. 2016. [Google Scholar]
  31. El Mezouary, L., B. El Mansouri, and M. El Bouhaddioui. Groundwater forecasting using a numerical flow model coupled with machine learning model for synthetic time series. in Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020. 2020. [Google Scholar]
  32. El Mezouary, L., et al., Modélisation numérique de la variation saisonnière de la qualité des eaux souterraines de l’aquifère de Magra, Italie. 2015(2): p. 25-31. [Google Scholar]
  33. El Mezouary, L., et al. Coupling of numerical flow model with the Susceptibility Index method (SI) to assess the groundwater vulnerability to pollution. in Proceedings of the 4th Edition of International Conference on Geo-IT and Water Resources 2020, Geo-IT and Water Resources 2020. 2020. [Google Scholar]
  34. Craig, J.R. and T.J.A.I.W.R. Heidlauf, Coordinate mapping of analytical contaminant transport solutions to non-uniform flow fields. 2009. 32(3): p. 353-360. [Google Scholar]
  35. Freeze, R.A.J.W.R.R., A stochastic‐conceptual analysis of one‐dimensional groundwater flow in nonuniform homogeneous media. 1975. 11(5): p. 725-741. [Google Scholar]
  36. BIR, S., Ecoulements à travers les milieux poreux. Approche stochastique. 2012, Université de Tizi Ouzou-Mouloud Mammeri. [Google Scholar]
  37. Dagan, G.J.T.I.P.M., Higher-order correction of effective permeability of heterogeneous isotropic formations of lognormal conductivity distribution. 1993. 12(3): p. 279-290. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.