Open Access
Issue
E3S Web Conf.
Volume 317, 2021
The 6th International Conference on Energy, Environment, Epidemiology, and Information System (ICENIS 2021)
Article Number 01086
Number of page(s) 10
Section Culture and Environment
DOI https://doi.org/10.1051/e3sconf/202131701086
Published online 05 November 2021
  1. World Helath Organization. Coronavirus disease (COVID-19) (2019) Retrivied from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 [Google Scholar]
  2. B. Joob, V. Wiwanitkit. COVID-19 can present with a rash and be mistaken for dengue, Journal of the American Academy of Dermatology, 82 (2020) https://doi.org/10.1016/j.jaad.2020.03.036 [Google Scholar]
  3. A. Athena, E. Laelasari, T. Puspita. Implementation of disinfection in preventing the transmission of covid-19 and potential risks to health in indonesia. J Ekol Kesehat. 19 (1):1–20 (2020) https://doi.org/10.22435/jek.v19i1.3146 [Google Scholar]
  4. WHO. WHO Coronavirus Disease (COVID-19). Retrivied from: https://covid19.who.int/%0Ahttps://covid19.who.int/%0Ahttps://covid19.who.int/?gclid=CjwKCAjwnK36BRBVEiwAsMT8WJ3y00_BUzvrLsvbl3uthuoTH_Occ45gyEUbpYRyEqAzll3aZB6TYxoCcM0QAvD_BwE [Google Scholar]
  5. A. Wilder-Smith, Y. Bar-Yam, D. Fisher. Lockdown to contain COVID-19 is a window of opportunity to prevent the second wave, Journal of Travel Medicine. Oxford University Press, 27 (2021) https://pubmed.ncbi.nlm.nih.gov/32478396/ [Google Scholar]
  6. H. Lau, V. Khosrawipour, P. Kocbach, A. Mikolajczyk, J.Schubert, J. Bania et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China, J Travel Med. 27 (3): 1–7 (2021) https://pubmed.ncbi.nlm.nih.gov/32181488/ [Google Scholar]
  7. M. Pachetti, B. Marini, F. Giudici, F. Benedetti, S. Angeletti, M. Ciccozzi et al. Impact of lockdown on Covid-19 case fatality rate and viral mutations spread in 7 countries in Europe and North America, J Transl Med. 18 (1) (2020) https://pubmed.ncbi.nlm.nih.gov/32878627/ [Google Scholar]
  8. Q. Zheng, F. K. Jones, S. V. Leavitt, L. Ung, A. B. Labrique, D. H. Peters et al. HIT-COVID, a global database tracking public health interventions to COVID-19, Sci Data. 7 (1). https://pubmed.ncbi.nlm.nih.gov/32855428/ [Google Scholar]
  9. J. Ryan, J. Okeibunor, A. Talisuna, C. S. Wiysonge. Setting up and relaxation of public health social and physical distancing measures for covid-19: A rapid review, Pan Afr Med J. 35: 1–5 (2020) https://pubmed.ncbi.nlm.nih.gov/33623600/ [Google Scholar]
  10. J. P. Messina, O. J. Brady, N. Golding, M. U. G. Kraemer, G. R. W. Wint, S. E. Ray et al. The current and future global distribution and population at risk of dengue. Nat Microbiol. 4 (9):1508–15 (2019) /pmc/articles/PMC6784886/?report=abstract [Google Scholar]
  11. S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes et al. The global distribution and burden of dengue, Nature, 496 (7446):504–507 (2013) /pmc/articles/PMC3651993/?report=abstract [Google Scholar]
  12. D. J. Gubler. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century, Trends Microbiol. 10, 100–103 (2002) https://pubmed.ncbi.nlm.nih.gov/11827812/ [Google Scholar]
  13. A. Sanyaolu. Global epidemiology of dengue hemorrhagic fever: An update. J Hum Virol Retrovirology. 5 (6), (2017) http://medcraveonline.com [Google Scholar]
  14. S. Runge-Ranzinger, A. Kroeger, P. Olliaro, P. J. McCall, G. Sánchez Tejeda, L. S. Lloyd et al. Dengue Contingency Planning: From Research to Policy and Practice, PLoS Negl Trop Dis. 10 (9), (2016) [Google Scholar]
  15. World Health Organization. Treatment, Prevention And Control Treatment, Prevention And Control 2012-2020 (2012) Retrivied from: www.who.int/neglected_diseases/en [Google Scholar]
  16. C. Buhler, V. Winkler, S. Runge-Ranzinger, R. Boyce, O. Horstick. Environmental methods for dengue vector control – A systematic review and meta-analysis, PLoS Neglected Tropical Diseases. 13 (7), (2019) https://pubmed.ncbi.nlm.nih.gov/31295250/ [Google Scholar]
  17. D. Wu, J. Lu, Q. Liu, X. Ma, W. He. To alert coinfection of COVID-19 and dengue virus in developing countries in the dengue-endemic area, Infection Control and Hospital Epidemiology, Cambridge University Press, 41 (2020) https://doi.org/10.1017/ice.2020.193 [Google Scholar]
  18. A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ, 339 (2009) http://www.bmj.com/ [Google Scholar]
  19. M-M. Olive, T. Baldet, J. Devillers, J. Fite, M-C. Paty, C. Paupy et al. The COVID-19 pandemic should not jeopardize dengue control, PLoS Negl Trop Dis, 14 (9), (2020) https://dx.plos.org/10.1371/journal.pntd.0008716 [Google Scholar]
  20. J. A. Cardona-Ospina, K. Arteaga-Livias, W. E. Villamil-Gómez, C. E. Pérez-Díaz, D. Katterine Bonilla-Aldana, Á. Mondragon-Cardona et al. Dengue and COVID-19, overlapping epidemics? An analysis from Colombia, J Med Virol, 93 (1):522–527 (2021) https://pubmed.ncbi.nlm.nih.gov/32558962/ [Google Scholar]
  21. H. G. Dantés, P. Manrique-Saide, G. Vazquez-Prokopec, F. C. Morales, J. B. Siqueira Junior, F. Pimenta et al. Prevention and control of aedes transmitted infections in the post-pandemic scenario of COVID-19: Challenges and opportunities for the Region of the Americas, Mem Inst Oswaldo Cruz. (2020) https://pubmed.ncbi.nlm.nih.gov/32785481/ [Google Scholar]
  22. A. Daniel Reegan, M. Rajiv Gandhi, A. Cruz Asharaja, C. Devi, S. P. Shanthakumar. COVID-19 lockdown: impact assessment on Aedes larval indices, breeding habitats, effects on vector control programme and prevention of dengue outbreaks. Heliyon, 6 (10), (2020) https://pubmed.ncbi.nlm.nih.gov/33043162/ [Google Scholar]
  23. M. H. Rahim, N. C. Dom, S.N. S. Ismail, A. A.Mulud, S. Abdullah, B. Pradhan. The impact of novel coronavirus (2019-nCoV) pandemic movement control order (MCO) on dengue cases in Peninsular Malaysia, One Heal, 12 (2021) https://pubmed.ncbi.nlm.nih.gov/33553566/ [Google Scholar]
  24. J. T. Lim, B. L. Dickens, J. Ong, J. Aik, V. J. Lee, A. R. Cook et al. Decreased dengue transmission in migrant worker populations in Singapore attributable to SARS-CoV-2 quarantine measures. J Travel Med. 28 (2), (2021) https://pubmed.ncbi.nlm.nih.gov/33274384/ [Google Scholar]
  25. C. R. Vicente, T. C. C. da Silva, L. D. Pereira, A. E. Miranda. Impact of concurrent epidemics of dengue, chikungunya, zika, and covid-19. Rev Soc Bras Med Trop, 54 (2021) https://pubmed.ncbi.nlm.nih.gov/33656154/ [Google Scholar]
  26. S. Q. Ong, H. Ahmad, A. M. M. Ngesom. Implications of the COVID-19 lockdown on dengue transmission in Malaysia. Infect Dis Rep. 13(1) (2021) https://pubmed.ncbi.nlm.nih.gov/33562890/ [Google Scholar]
  27. J. T. Lim, L. Z. X. Chew, E. L.W. Choo, B. S. L. Dickens, J. Ong, J. Aik et al. Increased Dengue Transmissions in Singapore Attributable to SARS-CoV-2 Social Distancing Measures. J Infect Dis. 223 (3):399–402 (2021) https://pubmed.ncbi.nlm.nih.gov/33000172/ [Google Scholar]
  28. M. M. Rahman, M. Bodrud-Doza, M. Shammi, A. R. Md Towfiqul Islam, A. P. Moniruzzaman Khan. COVID-19 pandemic, dengue epidemic, and climate change vulnerability in Bangladesh: Scenario assessment for strategic management and policy implications. Environ Res, 192 (2021) https://pubmed.ncbi.nlm.nih.gov/33069704/ [Google Scholar]
  29. J. T. Lim, B.S. L. Dickens, L. Z. X. Chew, E. L. W. Choo, J. R. Koo, J. Aik et al. Impact of SARS-CoV-2 interventions on dengue transmission, PLoS Negl Trop Dis. 14 (10):1–17 (2020) https://pubmed.ncbi.nlm.nih.gov/33119609/ [Google Scholar]
  30. J. P. S. de la Cruz, C. A. Tovilla-Zárate, D. L. González-Morales, T. B. González-Castro. Riesgo de sindemia de COVID-19 y fiebre del dengue en el sur de México, Gac Med Mex.156 (5): 460–464 (2020) [Google Scholar]
  31. S. T. Stoddard, A. C. Morrison, G. M. Vazquez-Prokopec, V. P. Soldan, T. J. Kochel, U. Kitron et al. The role of human movement in the transmission of vector-borne pathogens, PLoS Negl Trop Dis. 3 (7): e481 (2009) www.plosntds.org [Google Scholar]
  32. A. Jindal, S. Rao. Lockdowns to contain COVID-19 increase risk and severity of mosquito-borne disease outbreaks [Internet]. medRxiv (2020) https://doi.org/10.1101/2020.04.11.20061143 [Google Scholar]
  33. S. Swain, M. Bhatt, D. Biswal, S. Pati, R. J. Soares Magalhaes. Risk factors for dengue outbreaks in Odisha, India: A case-control study, J Infect Public Health. 13 (4):625–631 (2020) https://pubmed.ncbi.nlm.nih.gov/31537510/ [Google Scholar]
  34. S. Abdullah, A. A. Mansor, N. N. L. M.Napi, W. N. W. Mansor, A. N. Ahmed, M. Ismail et al. Air quality status during 2020 Malaysia Movement Control Order (MCO) due to 2019 novel coronavirus (2019-nCoV) pandemic, Sci Total Environ. 729 (2020) https://pubmed.ncbi.nlm.nih.gov/32353722/ [Google Scholar]
  35. S. T. Stoddard, B. M. Forshey, A. C. Morrison, V. A. Paz-Soldan, G. M. Vazquez-Prokopec, H. Astete et al. House-to-house human movement drives dengue virus transmission, Proc Natl Acad Sci U S A. 110 (3):994–999 (2003) https://pubmed.ncbi.nlm.nih.gov/23277539z [Google Scholar]
  36. K. L. Schaber, T. A. Perkins, A. L. Lloyd, L. A. Waller, U. Kitron, V. A. Paz-Soldan et al. Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics, PLoS Comput Biol 17 (1), (2021) https://pubmed.ncbi.nlm.nih.gov/33465065/ [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.