Open Access
Issue
E3S Web Conf.
Volume 318, 2021
Second International Conference on Geotechnical Engineering – Iraq (ICGE 2021)
Article Number 03003
Number of page(s) 11
Section Developments in Structural Engineering and Construction Materials
DOI https://doi.org/10.1051/e3sconf/202131803003
Published online 08 November 2021
  1. Domone, P.L., 2007. A review of the hardened mechanical properties of self-compacting concrete. Cement and concrete composites, 29(1), pp.1–12. [Google Scholar]
  2. Gesoglu, M., Güneyisi, E., Alzeebaree, R. and Mermerdas, K., 2013. Effect of silica fume and steel fiber on the mechanical properties of the concretes produced with cold bonded fly ash aggregates. Construction and Building Materials, 40, pp.982–990. [Google Scholar]
  3. Rangan, B. V., 2008. Low-calcium fly ash-based geopolymer concrete. Concrete Construction Engineering Handbook. Taylor and Francis Group, Boca Raton, FL. [Google Scholar]
  4. Çevik, A., Alzeebaree, R., Humur, G., Nis, A. and Gülsan, M.E., 2018. Effect of nano-silica on the chemical durability and mechanical performance of fly ash based geopolymer concrete. Ceramics International, 44(11), pp.12253–12264. [Google Scholar]
  5. Xie, J., Wang, J., Rao, R., Wang, C. and Fang, C., 2019. Effects of combined usage of GGBS and fly ash on workability and mechanical properties of alkali activated geopolymer concrete with recycled aggregate. Composites Part B: Engineering, 164, pp.179–190. [Google Scholar]
  6. Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A., 2018. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Advances in concrete construction, 6(4), p.345. [Google Scholar]
  7. Khaloo, A., Raisi, E.M., Hosseini, P. and Tahsiri, H., 2014. Mechanical performance of self-compacting concrete reinforced with steel fibers. Construction and building materials, 51, pp.179–186. [Google Scholar]
  8. Alzeebaree, R., Çevik, A., Nematollahi, B., Sanjayan, J., Mohammedameen, A. and Gülsan, M.E., 2019. Mechanical properties and durability of unconfined and confined geopolymer concrete with fiber reinforced polymers exposed to sulfuric acid. Construction and Building Materials, 215, pp.1015–1032. [Google Scholar]
  9. Alomayri, T., 2017. The microstructural and mechanical properties of geopolymer composites containing glass microfibres. Ceramics International, 43(5), pp.4576–4582. [Google Scholar]
  10. Al-Majidi, M.H., Lampropoulos, A. and Cundy, A.B., 2017. Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain hardening characteristics. Composite Structures, 168, pp.402–427. [Google Scholar]
  11. Zhang, S. and Horrocks, A.R., 2003. A review of flame retardant polypropylene fibers. Progress in Polymer Science, 28(11), pp.1517–1538. [Google Scholar]
  12. Khaliq, W. and Kodur, V., 2018. Effectiveness of polypropylene and steel fibers in enhancing fire resistance of high-strength concrete columns. Journal of Structural Engineering, 144(3), p.04017224. [Google Scholar]
  13. Nawy, E.G., 1996. Fundamentals of high strength high performance concrete. Addison-Wesley Longman. [Google Scholar]
  14. Mohammadi, Y., Singh, S.P. and Kaushik, S.K., 2008. Properties of steel fibrous concrete containing mixed fibres in fresh and hardened state. Construction and Building Materials, 22(5), pp.956–965. [Google Scholar]
  15. Zhao, J., Zheng, J.J., Peng, G.F. and Sun, P.S., 2017. Spalling and cracking modelling of high-performance concrete exposed to elevated temperatures. Magazine of Concrete Research, 69(24), pp.1276–1287. [Google Scholar]
  16. Sakkas, K., Nomikos, P., Sofianos, A. and Panias, D., 2013. Slag based geopolymer for passive fire protection of tunnels. Underground. The Way to the Future.—Informa UK Limited, pp.343349. [Google Scholar]
  17. Harmathy, T.Z., 1970. Thermal properties of concrete at elevated temperatures. Journal of Materials. [Google Scholar]
  18. Nazari, A., Bagheri, A., Sanjayan, J.G., Dao, M., Mallawa, C., Zannis, P. and Zumbo, S., 2019. Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation. Construction and Building Materials, 196, pp.492–498. [Google Scholar]
  19. Davidovits, J. and Davidovics, M., 1991. Geopolymer: ultra-high temperature tooling material for the manufacture of advanced composites. How Concept Becomes Reality., 36, pp.1939–1949. [Google Scholar]
  20. Messina, F., Ferone, C., Colangelo, F. and Cioffi, R., 2015. Low temperature alkaline activation of weathered fly ash: Influence of mineral admixtures on early age performance. Construction and Building Materials, 86, pp.169–177. [Google Scholar]
  21. Lahoti, M., Wong, K.K., Yang, E.H. and Tan, K.H., 2018. Effects of Si/Al molar ratio on strength endurance and volume stability of metakaolin geopolymers subject to elevated temperature. Ceramics International, 44(5), pp.5726–5734. [Google Scholar]
  22. Shaikh, F.U.A. and Vimonsatit, V., 2015. Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures. Fire and materials, 39(2), pp.174–188. [Google Scholar]
  23. Vickers, L., Rickard, W.D. and van Riessen, A., 2014. Strategies to control the high temperature shrinkage of fly ash based geopolymers. Thermochimica Acta, 580, pp.20–27. [Google Scholar]
  24. Barbosa, V.F. and MacKenzie, K.J., 2003. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Materials research bulletin, 38(2), pp.319–331. [Google Scholar]
  25. Kovalchuk, G. and Krienko, P.V., 2009. Producing fire-and heat-resistant geopolymers. In Geopolymers (pp. 227–266). Woodhead Publishing. [Google Scholar]
  26. Barbosa, V.F. and MacKenzie, K.J., 2003. Synthesis and thermal behaviour of potassium sialate geopolymers. Materials Letters, 57(9-10), pp.1477–1482. [Google Scholar]
  27. Rickard, W.D., Temuujin, J. and van Riessen, A., 2012. Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. Journal of non-crystalline solids, 358(15), pp.1830–1839. [Google Scholar]
  28. Çelikten, S., Saridemir, M. and Deneme, i.Ö., 2019. Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, pp.50–61. [Google Scholar]
  29. Jiang, X., Xiao, R., Zhang, M., Hu, W., Bai, Y. and Huang, B., 2020. A laboratory investigation of steel to fly ash-based geopolymer paste bonding behavior after exposure to elevated temperatures. Construction and Building Materials, 254, p.119267. [Google Scholar]
  30. Hassan, A., Arif, M. and Shariq, M., 2019. Mechanical behaviour and microstructural investigation of Geopolymer concrete after exposure to elevated temperatures. Arabian Journal for Science and Engineering, pp.1–19. [Google Scholar]
  31. Kong, D.L. and Sanjayan, J.G., 2010. Effect of elevated temperatures on geopolymer paste, mortar and concrete. Cement and concrete research, 40(2), pp.334–339. [Google Scholar]
  32. Messina, Ferone, Colangelo, Roviello and Cioffi, 2018. Alkali activated waste fly ash as sustainable composite: Influence of curing and pozzolanic admixtures on the early-age physico-mechanical properties and residual strength after exposure at elevated temperature. Composites Part B-Engineering, 132, pp.161–169. [Google Scholar]
  33. Puertas, F., Amat, T., Fernândez-Jiménez, A. and Vazquez, T., 2003. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement and concrete research, 33(12), pp.2031–2036. [Google Scholar]
  34. Chi, M. and Huang, R., 2013. Binding mechanism and properties of alkali-activated fly ash/slag mortars. Construction and building materials, 40, pp.291–298. [Google Scholar]
  35. Kurtoglu, A.E., Alzeebaree, R., Aljumaili, O., Nis, A., Gulsan, M.E., Humur, G. and Cevik, A., 2018. Mechanical and durability properties of fly ash and slag based geopolymer concrete. Advances in concrete construction, 6(4), p.345. [Google Scholar]
  36. Güneyisi, E., Gesoglu, M., Akoi, A.O.M. and Mermerdas, K., 2014. Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Composites Part B: Engineering, 56, pp.83–91. [Google Scholar]
  37. Gulsan, M.E., Mohammedameen, A., Sahmaran, M., Nis, A., Alzeebaree, R. and Cevik, A., 2018. Effects of sulphuric acid on mechanical and durability properties of ECC confined by FRP fabrics. Advances in concrete construction, 6(2), p.199. [Google Scholar]
  38. Hadi, M.N.S., 2009. Reinforcing concrete columns with steel fibres. Asian Journal of Civil Engineering, 10(1), pp.79–95. [Google Scholar]
  39. Singh, B., Kumar, P. and Kaushik, S.K., 2001. High performance composites for the new millennium. Journal of Structural Engineering (Madras). [Google Scholar]
  40. Holschemacher, K., Mueller, T. and Ribakov, Y., 2010. Effect of steel fibres on mechanical properties of high-strength concrete. Materials & Design (1980-2015), 31(5), pp.2604–2615. [Google Scholar]
  41. Barnett, S.J., Lataste, J.F., Parry, T., Millard, S.G. and Soutsos, M.N., 2010. Assessment of fibre orientation in ultra high performance fibre reinforced concrete and its effect on flexural strength. Materials and Structures, 43(7), pp.1009–1023. [Google Scholar]
  42. Sedriks, A.J., 1996. Corrosion of stainless steel, 2. [Google Scholar]
  43. Li, V.C. and Maalej, M., 1996. Toughening in cement based composites. Part II: Fiber reinforced cementitious composites. Cement and Concrete Composites, 18(4), pp.239–249. [Google Scholar]
  44. He, P., Jia, D., Lin, T., Wang, M. and Zhou, Y., 2010. Effects of high-temperature heat treatment on the mechanical properties of unidirectional carbon fiber reinforced geopolymer composites. Ceramics International, 36(4), pp.1447–1453. [Google Scholar]
  45. Puertas, F., Gil-Maroto, A., Palacios, M. and Amat, T., 2006. Alkali-activated slag mortars reinforced with AR glassfibre. Performance and properties. Materiales de Construcciôn, 56(283), pp.79–90. [Google Scholar]
  46. Zhang, Z.H., Yao, X., Zhu, H.J., Hua, S.D. and Chen, Y., 2009. Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. Journal of Central South University of Technology, 16(1), pp.49–52. [Google Scholar]
  47. Bernal, S., De Gutierrez, R., Delvasto, S. and Rodriguez, E., 2010. Performance of an alkali-activated slag concrete reinforced with steel fibers. Construction and building Materials, 24(2), pp.208–214. [Google Scholar]
  48. Zhang, H.Y., Kodur, V., Cao, L. and Qi, S.L., 2014. Fiber reinforced geopolymers for fire resistance applications. Procedia engineering, 71, pp.153–158. [Google Scholar]
  49. Aygörmez, Y., Canpolat, O., Al-mashhadani, M.M. and Uysal, M., 2020. Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Construction and Building Materials, 235, p.117502. [Google Scholar]
  50. Bindiganavile, V., Goncalves, J.R. and Boluk, Y., 2016. Crack growth resistance in fibre reinforced geopolymer concrete exposed to sustained extreme temperatures. In Key Engineering Materials (Vol. 711, pp. 511–518). Trans Tech Publications Ltd. [Google Scholar]
  51. Shaikh, F.U.A. and Hosan, A., 2016. Mechanical properties of steel fibre reinforced geopolymer concretes at elevated temperatures. Construction and building materials, 114, pp.15–28. [Google Scholar]
  52. Kong, D.L., Sanjayan, J.G. and Sagoe-Crentsil, K., 2007. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and concrete research, 37(12), pp.1583–1589. [Google Scholar]
  53. Utami, F.A.R., Triwiyono, A., Agustini, N.K.A. and Perdana, I., 2020. Thermal conductivity of geopolymer with polypropylene fiber. In IOP Conference Series: Materials Science and Engineering (Vol. 742, No. 1, p. 012031). IOP Publishing. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.