Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 01001
Number of page(s) 8
Section Fluid
DOI https://doi.org/10.1051/e3sconf/202132101001
Published online 11 November 2021
  1. M. Lackner, F. Winter, A. K. Agarwal (Eds), Handbook of Combustion (Wiley, Hoboken, 2010) [CrossRef] [Google Scholar]
  2. I. Bilousov, M. Bulgakov, V. Savchuk, Modern Marine Internal Combustion Engines (Springer, Berlin, 2020) [CrossRef] [Google Scholar]
  3. A. C. Benim, A. Nahavandi, P. J. Stopford, K. J. Syed, “DES LES and URANS investigation of turbulent swirling flows in gas turbine combustors”, WSEAS Transactions on Fluid Mechanics 1(5) (2006) 465-472 [Google Scholar]
  4. C. Higman, M. van der Burgt, Gasification, 2nd ed (Elsevier, Amsterdam, 2008) [Google Scholar]
  5. R. Ehrlich, Renewable Energy (CRC Press, Boca Raton, 2013) [Google Scholar]
  6. M. S. Tahat, A. C. Benim, “Experimental analysis on thermophysical properties of Al2O3/CuO hybrid nano fluid with its effects on flat plate solar collector”, Defect and Diffusion Forum 374 (2017) 148–156 [CrossRef] [Google Scholar]
  7. E. DuBois, A. Mercier (Eds), Energy Recovery (Nova Science Publishers, New York, 2009) [Google Scholar]
  8. S. Bhattacharyya, H. Chattopadhyay, A. C. Benim, “Heat transfer enhancement of laminar flow of ethylene glycol through a square channel fitted with angular cut wavy strip”, Procedia Engineering 157 (2016) 19-28 [CrossRef] [Google Scholar]
  9. S. Bhattacharyya, A. C. Benim, H. Chattopadhyay, Experimental investigation of heat transfer performance of corrugated tube with spring tape inserts, Experimental Heat Transfer 32(5) (2019) 411-425 [CrossRef] [Google Scholar]
  10. L. Rosendahl (Ed), Biomass Combustion Science, Technology and Engineering (Elsevier, Amsterdam, 2013) [Google Scholar]
  11. S. Iqbal, A. C. Benim, S. Fischer, F. Joos, D. Kluß, A. Wiedermann, “Experimental and numerical analysis of natural bio and syngas swirl flames in a model gas turbine combustor”, Journal of Thermal Science 25(5) (2016) 460-469 [CrossRef] [Google Scholar]
  12. M. Kaltschmitt, H. Hartmann, H. Hofbauer, (Eds), Energie aus Biomasse (Springer, Berlin, 2016) [Google Scholar]
  13. B. Epple. R. Leithner, W. Linzer, H. Walter (Eds), Simulation von Kraftwerken und Feuerungen (Springer, Vienna, 2012) [Google Scholar]
  14. A. C. Benim, B. Epple, B. Krohmer, “Modelling of pulverised coal combustion by a Eulerian-Eulerian two-phase flow formulation”, Progress in Computational Fluid Dynamics – An International Journal 5(6) (2005) 345-361 [CrossRef] [Google Scholar]
  15. B. Epple, W. Fiveland, B. Krohmer, G. Richards, A. C. Benim, “Assessment of two-phase flow models for the simulation of pulverized coal combustion”, International Journal of Energy for a Clean Environment 6(3) (2005) 267-287 [CrossRef] [Google Scholar]
  16. C. Hasse, P. Debiagi, X. Wen, K. Hildebrand, M. Vascellari, T. Faravelli, “Advanced modeling approaches for CFD simulations of coal combustion and gasification”, Progress in Energy and Combustion Science 86 (2021) 100938 [CrossRef] [Google Scholar]
  17. P. Madjeski, “Coal combustion modelling in a frontal pulverized coal-fired boiler”, E3S Web of Conferences 46 (2018) 00010 [CrossRef] [EDP Sciences] [Google Scholar]
  18. D. Toporov, P. Bocian, P. Heil, A. Kellermann, H. Stadlerm S. Tschunko, M. Förster, R. Kneer, “Detailed investigation of a pulverized fuel swirl flame in CO2/O2 atmosphere”, Combustion and Flame 155 (2008) 605-618 [CrossRef] [Google Scholar]
  19. P. Warzecha, A. Boguslawski, “LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies”, Energy 66 (2014) 732-743 [CrossRef] [Google Scholar]
  20. A. Sadiki, S. Agrebi, M. Chrigui, A. S. Doost, R. Knappstein, F. Di Mare, J. Janicka, A. Massmeyer, D. Zabrodiec, J. Hees, R. Kneer, “Analyzing the effects of turbulence and multiphase treatment on oxy-coal combustion process predictions using LES and RANS”, Chemical Engineering Science 166 (2017) 283-230 [CrossRef] [Google Scholar]
  21. P. Gaikwad, H. Kulkarni, S. Sreedhara, “Simplified numerical modelling of oxy-fuel combustion of pulverized coal in a swirl burner”, Applied Thermal Engineering 124 (2017)734-745 [CrossRef] [Google Scholar]
  22. ANSYS Fluent Theory Guide, Rel. 2018 (ANSYS Inc., Canonsburg, 2018) [Google Scholar]
  23. S. R. Turns, An Introduction to Combustion, 3rd ed (McGraw-Hill, New York, 2012) [Google Scholar]
  24. S. A. Morsi, A. J. Alexander, An investigation of particle trajectories in two-phase flow systems, Journal of Fluid Mechanics 55(2) (2006) 193-208 [Google Scholar]
  25. A. H. Lefebvre, V. G. McDonnel, Atomization and Sprays, 2nd ed (CRC Press, Boca Raton, 2017) [CrossRef] [Google Scholar]
  26. W. E. Ranz, W. R. Marshall Jr., “Evaporation from drops, Part I and Part II”, Chemical Engineering Progress 48(4) (1952) 173–180 [Google Scholar]
  27. B. E. Launder, D. B. Spalding, “The numerical computation of turbulent flows”, Computer Methods in Applied Mechanics and Engineering 3(2) (1974) 269-289 [CrossRef] [Google Scholar]
  28. T.-H. Shih, W. W. Liou, A. Shabbir, Z. Yang, J. Zhu, “A new eddy-viscosity model for high Reynolds number turbulent flows - model development and validation”, Comput. Fluids 24(3) (1995) 227–238 [CrossRef] [Google Scholar]
  29. F. R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32(8) (1994) 1598–1605 [CrossRef] [Google Scholar]
  30. A. C. Benim. M. Cagan, A. Nahavandi, E. Pasqualotto, “RANS predictions of turbulent flow past a circular cylinder over the critical regime”, Proc. 5th IASME/WSEAS International Conference on Fluid Mechanics and Aerodynamics, Athens, Greece, August 25-27, 2007 (2007) 232-237 [Google Scholar]
  31. A. C. Gosman, E. Ioannides, “Aspects of computer simulation of liquid-fuelled combustors”, Journal of Energy 7(6) (1983) 482–490 [CrossRef] [Google Scholar]
  32. T. F. Smith, Z. F. Shen, J. N. Friedman, “Evaluation of coefficients for the weighted sum of gray gases model“, . J. Heat Transfer 104 (1982) 602–608 [CrossRef] [Google Scholar]
  33. S. Badzioch, P. G. W. Hawskley, “Kinetics of thermal decomposition of pulverized coal particles”, Industrial Engineering & Chemistry Process Design and Development 9 (1970) 521-530 [CrossRef] [Google Scholar]
  34. M. A. Field, D. W. Gill, B. B. Morgan, P. G. W. Hawskley, Combustion of Pulverized Coal (The British Coal Utilization Research Association Letherhead, 1967) [Google Scholar]
  35. M. M. Baum, P. J. Street, “Predicting the combustion behavior of coal particles”, Combustion Science Technology 3 (1971) 231-243 [CrossRef] [Google Scholar]
  36. B. F. Magnussen, B. H. Hjertager, “On mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion”, Proc. 16th Symp. (Int.) Combustion (The Combustion Institute, Pittsburgh, 1976) 719-729 [Google Scholar]
  37. D. Zabrodiec, A. Massmeyer, J. Hees, O. Hatzfeld, R. Kneer, “Flow pattern and behavior of 40kWth pulverized torrefied biomass flames under atmospheric and oxy-fuel conditions”, Renewable and Sustainable Energy Reviews 138 (2020) 110493 [Google Scholar]
  38. H. Tolvanen, L. Hokko, R. Raiko, “Fast pyrolysis of coal, peat, and torrefied wood: mass loss study with a drop-tube reactor, particle geometry analysis and kinetics modelling”, Fuel 111 (2013) 148-156 [CrossRef] [Google Scholar]
  39. F. L. Dryer, L. Glassmann, “High temperature oxidation of CO and CH4”, Proc. 14th Symposium (Int.) Combustion (The Combustion Institute, Pittsb., 1973) 233-249 [Google Scholar]
  40. C. K. Westbrook, F. L. Dryer, “Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames”, Combustion Science and Technology 27 (1981) 31-43 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.