Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 01002
Number of page(s) 8
Section Fluid
Published online 11 November 2021
  1. Dowlati, R., Kawaji, M., Chisholm, D., & Chan, A. M. (1992). Void fraction prediction in two-phase flow across a tube bundle. AIChE Journal, 38(4), pp. 619-622. [Google Scholar]
  2. Schrage, D. S., Hsu, J. T., & Jensen, M. K. (1988). Two‐phase pressure drop in vertical crossflow across a horizontal tube bundle. AIChE Journal, 34(1), pp. 107-115. [Google Scholar]
  3. M.B. Carver, L.N. Carlucci, W.W.R. Inch (1981). Thermal-hydraulics in recirculating steam generators – THIRST code user’s manual, Atomic Energy of Canada Limited, Chalk River, Ontario. [Google Scholar]
  4. D. Tincq, F. David (1995). THYC, un code 3D de thermohydraulique pour les générateurs de vapeur, les échangeurs de chaleur et les condenseurs, Revue Générale de Thermique, 34, pp. 141-153 [Google Scholar]
  5. Zuber, N., and Findlay, J. A. (1965). Average Volumetric Concentration in Two-Phase Flow Systems. ASME. J. Heat Transfer, 87(4): pp. 453–468. [Google Scholar]
  6. T. Ozaki, R. Suzuki, H. Mashiko & T. Hibiki (2013). Development of drift-flux model based on 8 × 8 BWR rod bundle geometry experiments under prototypic temperature and pressure conditions, J. of Nuclear Science and Technology, 50:6, pp. 563-580 [Google Scholar]
  7. Lellouche, G. S., and B. A. Zolotar (1982). Mechanistic model for predicting two-phase void fraction for water in vertical tubes, channels, and rod bundles. No. EPRI-NP-2246-SR. Electric Power Research Inst., Palo Alto, CA (USA). [Google Scholar]
  8. Smith, S.L. (1969). Void fractions in two-phase flow: a correlation based upon an equal velocity head model. Proc. Institution Mech. Eng., 184, pp. 647-664 [Google Scholar]
  9. Armand, A. A. (1959). The resistance during the movement of a two-phase system in horizontal pipes. Atomic Energy Research Establishment. [Google Scholar]
  10. Massena, W. A. (1960). Steam-water pressure drop and critical discharge flow – A digital computer program. No. HW-65706. General Electric Co. Hanford Atomic Products Operation, Richland, Wash. [Google Scholar]
  11. V. Stevanovic, Z. Stosic (2002). Advanced Three-Dimensional Two-Fluid Porous Media Method for Transient Two-Phase Flow Thermal-Hydraulics in Complex Geometries, Numerical Heat Transfer Part B, 41, pp. 263-289 [Google Scholar]
  12. Ishii, M. and N. Zuber (1979). Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AIChE Journal, 25, pp. 843-855. [Google Scholar]
  13. L. Schiller, A. Naumann (1933). Fundamental calculations in gravitational processing, Zeitschrift Des Vereines Deutscher Ingenieure, 77, pp. 318-320 [Google Scholar]
  14. Tomiyama, A. & Kataoka, I. & Zun, I. & Sakaguchi, T. (1998). Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions. JSME International Journal Series B 41, pp. 472. [Google Scholar]
  15. S. Morsi and A. Alexander (1972). An investigation of particle trajectories in two-phase flow systems, Journal of Fluid Mechanics, vol. 55, no. 2, pp. 193–208. [Google Scholar]
  16. R. Dowlati, A.M.C. Chan & M. Kawaji (1992). Hydrodynamics of two-phase flow across horizontal in-line and staggered rod bundles, Journal of Fluids Engineering, 114, pp. 450 – 456 [Google Scholar]
  17. P. Feenstra, D. Weaver & R. Judd (2000). An improved void fraction model for two-phase cross-flow in horizontal tube bundles, International Journal of Multiphase Flow, 26, pp. 1851 – 1857 [Google Scholar]
  18. M. Manninen, V. Taivassalo, S. Kallio (1996). On the mixture model for multiphase flow, VTT Publications, 288 [Google Scholar]
  19. H. Darcy (1856). Les fontaines publiques de la ville de Dijon. [Google Scholar]
  20. L. Consolini, D. Robinson & J.R. Thome (2006). Void Fraction and Two-Phase Pressure Drops for Evaporating Flow over Horizontal Tube Bundles Heat Transfer Engineering, Taylor & Francis, 27, pp. 5-21 [Google Scholar]
  21. K. Ishihara, J.W. Palen, J. Taborek (1980). Critical review of correlations for predicting two-phase flow pressure drop across tube banks, Heat Transfer Engineering, 1(3), pp. 23-32 [Google Scholar]
  22. R.W. Lockhart, R.C. Martinelli (1949). Proposed correlation of data for isothermal two-phase, two-component flow in pipes, Chemical Engineering Progress, 45(1), pp. 39-48 [Google Scholar]
  23. A. Zukauskas & R. Ulinskas (1983). Schlunder, E. U. (Ed.) Heat Exchanger Design Handbook, 2.2.4 Banks of plain and finned tubes, Hemisphere Publishing Corporation. [Google Scholar]
  24. Roser, R. (1999). Modélisation thermique de bouilleurs à tubes horizontaux. Etude numérique et validation expérimentale. PhD Thesis, Université de Provence Aix-Marseille 1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.