Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 01003
Number of page(s) 7
Section Fluid
DOI https://doi.org/10.1051/e3sconf/202132101003
Published online 11 November 2021
  1. B.A. Bhanvase, D.P. Barai, S.H. Sonawane, N. Kumar, S.S. Sonawane, Intensified Heat Transfer Rate With the Use of Nanofluids, in Handbook of Nanomaterials for Industrial Applications, Elsevier, 2018: pp. 739–750 [Google Scholar]
  2. D.P. Barai, K.K. Chichghare, S.S. Chawhan, B.A. Bhanvase, Synthesis and Characterization of Nanofluids: Thermal Conductivity, Electrical Conductivity and Particle Size Distribution, in Nanotechnology for Energy and Environmental Engineering, Springer, 2020: pp. 1–49 [Google Scholar]
  3. K.K. Chichghare, D.P. Barai, B.A. Bhanvase, Applications of Nanofluids in Solar Thermal Systems, in Nanofluids and Their Engineering Applications, CRC Press, 2019: pp. 275–314 [Google Scholar]
  4. R.N. Radkar, B.A. Bhanvase, D.P. Barai, S.H. Sonawane, Mater. Sci. Energy Technol. 2, 161–170 (2019) [Google Scholar]
  5. T.K. Hong, H.S. Yang, C.J. Choi, J. Appl. Phys. 97, 064311 (2005) [Google Scholar]
  6. B.A. Bhanvase, M.R. Sarode, L.A. Putterwar, A. K.A., M.P. Deosarkar, S.H. Sonawane, Chem. Eng. Process. Process Intensif. 82, 123–131 (2014) [Google Scholar]
  7. K.S. Hwang, S.P. Jang, S.U.S. Choi, Int. J. Heat Mass Transf. 52, 193–199 (2009) [Google Scholar]
  8. K. Ahmad, C. Wan, M.A. Al-Eshaikh, A.N. Kadachi, Appl. Surf. Sci. 474, 2–8 (2019) [Google Scholar]
  9. A. Godymchuk, I. Papina, E. Karepina, D. Kuznetsov, I. Lapin, V. Svetlichnyi, J. Nanoparticle Res. 21, (2019) [Google Scholar]
  10. E.A. Campos, D.V.B. Stockler Pinto, J.I.S. de Oliveira, E.D.C. Mattos, R.D.C.L. Dutra, J. Aerosp. Technol. Manag. 7, 267–276 (2015) [Google Scholar]
  11. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C. 113, 13103–13107 (2009) [Google Scholar]
  12. M.F. El-Kady, Y. Shao, R.B. Kaner, Nat. Rev. Mater. 1, 1–14 (2016) [Google Scholar]
  13. J. Liu, Y. Xue, M. Zhang, L. Dai, MRS Bull. 37, 1265–1272 (2012) [Google Scholar]
  14. G. Centi, S. Perathoner, ChemSusChem. 4, 913–925 (2011) [Google Scholar]
  15. C. Wang, M. Waje, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan, Nano Lett. 4, 345–348 (2004) [Google Scholar]
  16. N.A.C. Sidik, M.N.A.W.M. Yazid, S. Samion, Int. J. Heat Mass Transf. 111, 782–794 (2017) [Google Scholar]
  17. D.P. Barai, B.A. Bhanvase, S.H. Sonawane, Ind. Eng. Chem. Res. 59, 10231–10277 (2020) [Google Scholar]
  18. A. Arshad, M. Jabbal, Y. Yan, D. Reay, J. Mol. Liq. 279, 444–484 (2019) [Google Scholar]
  19. S. Koçak Soylu, İ. Atmaca, M. Asiltürk, A. Doğan, Appl. Therm. Eng. 157, 113743 (2019) [Google Scholar]
  20. A. Ceylan, K. Jastrzembski, S.I. Shah, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37, 2033–2038 (2006) [Google Scholar]
  21. A. Lanjewar, B. Bhanvase, D. Barai, S. Chawhan, S. Sonawane, Period. Polytech. Chem. Eng. 64, 271-282 (2019) [Google Scholar]
  22. B.A. Bhanvase, S.D. Kamath, U.P. Patil, H.A. Patil, A.B. Pandit, S.H. Sonawane, Chem. Eng. Process. Process Intensif. 104, 172–180 (2016) [Google Scholar]
  23. N.R. Koshta, B.A. Bhanvase, S.S. Chawhan, D.P. Barai, S.H. Sonawane, Indian Chem. Eng. 62, 202-215 (2020) [Google Scholar]
  24. S.S. Chawhan, D.P. Barai, B.A. Bhanvase, Mater. Today Commun. 23, 101148 (2020) [Google Scholar]
  25. H.A. Sarode, D.P. Barai, B.A. Bhanvase, R.P. Ugwekar, V. Saharan, Mater. Chem. Phys. 251, 123102 (2020) [Google Scholar]
  26. H. Mandhare, D. P. Barai, B. A. Bhanvase, V.K.V.K. Saharan, Mater. Res. Innov. 24, 433–441 (2020) [Google Scholar]
  27. D.P. Barai, B.A. Bhanvase, V.K. Saharan, Ind. Eng. Chem. Res. 58, 8349–8369 (2019) [Google Scholar]
  28. K. Singh, D.P. Barai, S.S. Chawhan, B.A. Bhanvase, V. Saharan, Mater. Today Commun. 26, 101986 (2021) [Google Scholar]
  29. M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Renew. Sustain. Energy Rev. 46, 218–235 (2015) [Google Scholar]
  30. C.R. Correa, A. Kruse, Materials (Basel). 11, 1568 (2018) [Google Scholar]
  31. Z. Wang, S. Yun, X. Wang, C. Wang, Y. Si, Y. Zhang, H. Xu, Ceram. Int. 45, 4208–4218 (2019) [Google Scholar]
  32. J. Zhang, H. Chen, Z. Ma, H. Li, Y. Dong, H. Yang, L. Yang, L. Bai, D. Wei, W. Wang, J. Alloys Compd. 832, 155029 (2020) [Google Scholar]
  33. A. Pistone, C. Espro, Curr. Opin. Green Sustain. Chem. 26, 100374 (2020) [Google Scholar]
  34. V. Siipola, S. Pflugmacher, H. Romar, L. Wendling, P. Koukkari, Appl. Sci. 10, 788 (2020) [Google Scholar]
  35. A. Kumar, V. Goyal, N. Sarki, B. Singh, A. Ray, T. Bhaskar, A. Bordoloi, A. Narani, K. Natte, ACS Sustain. Chem. Eng. 8, 15740–15754 (2020) [Google Scholar]
  36. P. Esmaeilzadeh, Z. Fakhroueian, A.A.M. Beigi, J. Nano Res. 16, 89–96 (2011) [Google Scholar]
  37. N. Abraham, A. Rufus, C. Unni, D. Philip, J. Mater. Sci. Mater. Electron. 28, 16527–16539 (2017) [Google Scholar]
  38. E.C. Okonkwo, E.A. Essien, E. Akhayere, M. Abid, D. Kavaz, T.A.H. Ratlamwala, Sol. Energy. 170, 658–670 (2018) [Google Scholar]
  39. R. Sadri, M. Hosseini, S.N. Kazi, S. Bagheri, A.H. Abdelrazek, G. Ahmadi, N. Zubir, R. Ahmad, N.I.Z. Abidin, J. Colloid Interface Sci. 509, 140–152 (2018) [Google Scholar]
  40. G. Adewumi, F. Inambao, Int. J. Renew. Energy Res. 10, 1302–1306 (2020) [Google Scholar]
  41. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958) [Google Scholar]
  42. C. Galande, A.D. Mohite, A. V. Naumov, W. Gao, L. Ci, A. Ajayan, H. Gao, A. Srivastava, R.B. Weisman, P.M. Ajayan, Sci. Rep. 1, 85 (2011) [Google Scholar]
  43. L. Shahriary, A.A. Athawale, Int. J. Renew. Energy Environ. Eng. 2, 58–63 (2014) [Google Scholar]
  44. T.F. Emiru, D.W. Ayele, Egypt. J. Basic Appl. Sci. 4, 74–79 (2017) [Google Scholar]
  45. T. Togashi, T. Naka, S. Asahina, K. Sato, S. Takami, T. Adschiri, Dalt. Trans. 40, 1073–1078 (2011) [Google Scholar]
  46. M.C. Morris, H.F. McMurdie, E.H. Evans, B. Paretzkin, J.H. de Groot, C.R. Hubbard, S.J. Carmel, Standard X-ray Diffraction Powder Patterns, U.S. Government Printing Office, Washington D.C., 1976 [Google Scholar]
  47. C.C. Li, N.Y. Hau, Y. Wang, A.K. Soh, S.P. Feng, Phys. Chem. Chem. Phys. 18, 15363–15368 (2016) [Google Scholar]
  48. X. Wang, X. Xu, S.U.S. Choi, S.U. S. Choi, X. Wang, X. Xu, S.U. S. Choi, J. Thermophys. Heat Transf. 13, 474–480 (1999) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.