Open Access
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04005
Number of page(s) 6
Section Heat and Mass Transfert
Published online 11 November 2021
  1. Sarpkaya T., A critical review of the intrinsic nature of vortex-induced vibrations, Journal of Fluids and Structures, 19 (4),pp 389-447, 2004. [Google Scholar]
  2. Williamson C. H. K. and Govardhan R., A brief review of recent results in vortex-induced vibrations, Journal of Wind Engineering and Industrial Aerodynamics, 96(6-7),pp 713-735, 2008. [Google Scholar]
  3. Wang Js., Fan D. and Lin K., A review on flow-induced vibration of offshore circular cylinders, J Hydrodyn, 32, pp 415-440, 2020. [Google Scholar]
  4. Pottebaum T., and Gharib M., Using Oscillations to Enhance Heat Transfer for a Circular Cylinder, Int. J. Heat Mass Transfer, 49 (17-18), pp. 3190-3210, 2006. [Google Scholar]
  5. Fu W. S., and Tong B. H., Numerical Investigation of Heat Transfer From a Heated Oscillating Cylinder in a Cross Flow, Int. J. Heat Mass Transfer, 45, pp. 3033-3043, 2002. [Google Scholar]
  6. Zhang N., Zheng Z. C., and Eckels S., Study of Heat Transfer on the Surface of a Circular Cylinder in Flow Using an Immersed-Boundary Method, Int. J. Heat Fluid Flow, 29(6),pp. 1558-1566, 2008. [Google Scholar]
  7. Su Y. C., Ge P. Q., and Yan K., Numerical Analysis on Heat Transfer and Flow-Induced Vibration of an Elastically Supported Cylinder, Mater. Sci. Forum, 697-698, pp. 585-589, 2011. [Google Scholar]
  8. Zhou C. Y., So R. M., and Lam, K., Vortex-Induced Vibrations of an Elastic Circular Cylinder, J. Fluids Struct., 13, pp. 165-189, 1999. [Google Scholar]
  9. Baratchi F, Saghafian M, and Baratchi B, Numerical investigation on lock-on condition and convective heat transfer from an elastically supported cylinder in a cross flow, J. Fluid Eng.-T. ASME, 135:031103, 2013. [Google Scholar]
  10. Wang S. K., Hung T. C., Lin G. W., and Pei B. S., Numerical simulations for the phenomena of vortex-induced vibration and heat transfer of a circular cylinder, Numer. Heat Tr. A-Appl., 45, pp 719-36, 2014. [Google Scholar]
  11. Wan H., and Patnaik S. S., Suppression of vortex-induced vibration of a circular cylinder using thermal effects, Phys. Fluids, 28:123603, 2016. [Google Scholar]
  12. Izadpanah E., Amini Y., and Ashouri A. A., comprehensive investigation of vortex induced vibration effects on the heat transfer from a circular cylinder, Int. J. Therm. Sci., 125 pp 405-18, 2018. [Google Scholar]
  13. D. Chatterjee, Dual role of thermal buoyancy in controlling boundary layer separation around bluff obstacles, Int. Commun. Heat Mass Transfer, 56, pp 152-158, 2014. [Google Scholar]
  14. A. Sharma and V. Eswaran, Effect of aiding and opposing buoyancy on the heat and fluid flow across a square cylinder at Re = 100, Numer. Heat Transfer, Part A 45, pp 601-624, 2004. [Google Scholar]
  15. S. Singh and D. Chandar, Effects of thermal induced buoyancy forces on the vortex shedding of a circular cylinder, Int. Commun. Heat Mass Transfer, 76, pp 215-224, 2016. [Google Scholar]
  16. H. Garg, A. K. Soti, and R. Bhardwaj, A sharp interface immersed boundary method for vortex-induced vibration in the presence of thermal buoyancy, Phys. Fluids, 30 (2), 023603, 2018. [Google Scholar]
  17. Garg H., Soti A. K., and Bhardwaj R., Vortex-induced vibration and galloping of a circular cylinder in presence of cross-flow thermal buoyancy. Phys. Fluids, 31, 113603, 2019. [Google Scholar]
  18. Garg H., Soti A. K., and Bhardwaj R., Vortex-induced vibration of a cooled circular cylinder, Phys. Fluids, 31, 083608, 2019. [Google Scholar]
  19. C. R. Sonawane, Y. B. More, Anand Kumar Pandey, “Numerical simulation of unsteady channel flow with a moving indentation using solution dependent weighted least squares based gradients calculations over unstructured mesh”, Heat Transfer Engineering Journal, 2021, doi: [Google Scholar]
  20. Sonawane Chandrakant, Hitesh Panchal & Kishor Kumar Sadasivuni (2021) Numerical simulation of flow-through heat exchanger having helical flow passage using high order accurate solution dependent weighted least square based gradient calculations, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, DOI: 10.1080/15567036.2021.1900457 [Google Scholar]
  21. J C Mandal, C R Sonawane, A S Iyer and S J GosaviInamdar, Incompressible flow computations over moving boundary using a novel upwind method, Computers & Fluids, 46 (1), pp 348-352, 2011. [Google Scholar]
  22. Mandal, J. C. and Sonawane, C. R., Simulation of flow inside differentially heated rotating cavity, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 23 No. 1, pp. 23-54, 2013 [Google Scholar]
  23. C R Sonawane and J C Mandal, Simulation of moderator flow and temperature inside calandria of CANDU reactor using artificial compressibility method, Journal of Heat Transfer Engineering, Vol 35, Issue 11/12, July/August 2014. [Google Scholar]
  24. C. R. Sonawane, Y. B. More and A. Pandey, Numerical Simulation of Unsteady Channel Flow with a Moving Indentation Using Solution Dependent Weighted Least Squares Based Gradients Calculations over Unstructured Mesh, Heat Transfer Engineering, 2021, DOI: 10.1080/01457632.2021.1874661 [Google Scholar]
  25. Cook J L, Hirt C W, Amsden A A, An arbitrary Lagrangian-Eulerian computing method for all flow speeds, Journal of Computational Physics, 14, Issue 3, pp. 227-253, March 1974. [Google Scholar]
  26. H Bijl, A de Boer, M S van der Schoot, Mesh deformation based on radial basis function interpolation, Computers and Structures, 85 (11-14), pp 784–795, 2007. [Google Scholar]
  27. Sonawane, C.R., Mandal, J.C. and Rao, S. High Resolution Incompressible Flow Computations over Unstructured Mesh using SDWLS Gradients. J. Inst. Eng. India Ser. C 100, pp 83-96, 2019. [Google Scholar]
  28. A J Chorin, Numerical solution of Navier-Stokes equations, Math Comput, 22, 745-762, 1968. [Google Scholar]
  29. Lombard C K, Thomas P D, Geometric conservation law and its application to flow computations on moving grids. AIAA Journal, 17:1030–1037, 1979. [Google Scholar]
  30. E. F. Toro, M. Spruce, W. Speares. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4, 25-34, 1994. [Google Scholar]
  31. J. C. Mandal, S. P. Rao. High-resolution finite volume computations on unstructured grids using solution dependent weighted least squares gradients. Computers and Fluids, 44, 23-31, 2011. [Google Scholar]
  32. C. F. V. Loan, G. H. Golub. Matrix computations, 3rd ed. The Johns Hopkins University Press, 1996. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.