Open Access
Issue
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
Article Number 04006
Number of page(s) 10
Section Heat and Mass Transfert
DOI https://doi.org/10.1051/e3sconf/202132104006
Published online 11 November 2021
  1. Himrane, N., et al., Storage Silos Self Ventilation: Interlinked Heat and Mass Transfer Phenomenon. Numerical Heat Transfer, Part A: Applications, 2014. 66(4): p. 379-401. [Google Scholar]
  2. Javanmard, M., M.H. Taheri, and S.M. Ebrahimi, Heat Transfer of Third-grade Fluid Flow in a Pipe under an Externally Applied Magnetic Field with Convection on Wall %J Applied Rheology. 2018. 28(5). [Google Scholar]
  3. Rotondi, R., S. Succi, and G.J.A.R. Bella, Direct Simulation of Fluid Transport at Solid Interfaces with a Multiscale Lattice-Boltzmann Finite-Volume Method. 2004. 14(1): p. 12-21. [Google Scholar]
  4. Alves, T.A. and C.A.J.I.J.o.T.S. Altemani, An invariant descriptor for heaters temperature prediction in conjugate cooling. 2012. 58: p. 92-101. [Google Scholar]
  5. Usui, T., M. Kaminaga, and Y. Sudo, Combined Forced and Free Convective Heat Transfer Characteristics in a Narrow Vertical Rectangular Channel with 2.5 mm in Gap Heated from Both Sides. Journal of Nuclear Science and Technology, 1989. 26(6): p. 580-590. [Google Scholar]
  6. Sahoo, R.K., A. Sarkar, and V.M.K. Sastri, Effect of an Obstruction on Natural Convection Heat Transfer in Vertical Channels—a Finite Element Analysis. International Journal of Numerical Methods for Heat & Fluid Flow, 1993. 3(3): p. 267-276. [Google Scholar]
  7. Pu, W.L., P. Cheng, and T.S. Zhao, Mixed-Convection Heat Transfer in Vertical Packed Channels. Journal of Thermophysics and Heat Transfer, 1999. 13(4): p. 517-521. [Google Scholar]
  8. Cruchaga, M. and D. Celentano, Modelling natural and mixed convection in obstructed channels. International Journal of Numerical Methods for Heat & Fluid Flow, 2003. 13(1): p. 57-85. [Google Scholar]
  9. Wu, H.W. and S.W. Perng, Turbulent flow and heat transfer enhancement of mixed convection over heated blocks in a channel. International Journal of Numerical Methods for Heat & Fluid Flow, 2005. 15(2): p. 205-225. [Google Scholar]
  10. Oulaid, O., B. Benhamou, and N. Galanis, Flow reversal in combined laminar mixed convection heat and mass transfer with phase change in a vertical channel. International Journal of Heat and Fluid Flow, 2010. 31(4): p. 711-721. [Google Scholar]
  11. Guerroudj, N. and H. Kahalerras, Mixed convection in an inclined channel with heated porous blocks. International Journal of Numerical Methods for Heat & Fluid Flow, 2012. 22(7): p. 839-861. [Google Scholar]
  12. Huang, P.C., et al., Enhancement of forced-convection cooling of multiple heated blocks in a channel using porous covers. International Journal of Heat and Mass Transfer, 2005. 48(3-4): p. 647-664. [Google Scholar]
  13. Saim, R., et al., Turbulent flow and heat transfer enhancement of forced convection over heated baffles in a channel. International Journal of Numerical Methods for Heat & Fluid Flow, 2013. 23(4): p. 613-633. [Google Scholar]
  14. Ma, Y., et al., Study of nanofluid forced convection heat transfer in a bent channel by means of lattice Boltzmann method. Physics of Fluids, 2018. 30(3). [Google Scholar]
  15. Teixeira, F.B., et al., Geometrical Evaluation of a Channel with Alternated Mounted Blocks under Mixed Convection Laminar Flows Using Constructal Design. Journal of Engineering Thermophysics, 2020. 29(1): p. 92-113. [Google Scholar]
  16. Sun, H., et al., On the modeling of aiding mixed convection in vertical channels. Heat and Mass Transfer, 2012. 48(7): p. 1125-1134. [Google Scholar]
  17. Harnane, Y., et al., Experimental and Numerical Investigation of Turbulent Natural Convection Flow in a Vertical Channel With a Heated Obstacle. Journal of Heat Transfer, 2014. 136(10). [Google Scholar]
  18. Zaman Shuja, S. and B. Yilbas, Flow over a heated block in a vertical channel. International Journal of Numerical Methods for Heat & Fluid Flow, 2014. 24(5): p. 1044-1056. [Google Scholar]
  19. Prasad, K.V., P. Mallikarjun, and H. Vaidya, Mixed Convective Fully Developed Flow in a Vertical Channel in the Presence of Thermal Radiation and Viscous Dissipation. International Journal of Applied Mechanics and Engineering, 2017. 22(1): p. 123-144. [Google Scholar]
  20. Sarper, B., M. Saglam, and O. Aydin, Experimental and numerical investigation of natural convection in a discretely heated vertical channel: Effect of the blockage ratio of the heat sources. International Journal of Heat and Mass Transfer, 2018. 126: p. 894-910. [Google Scholar]
  21. Bhowmick, S., M.M. Molla, and L.-S. Yao, Non-Newtonian Mixed Convection Flow along an Isothermal Horizontal Circular Cylinder. Numerical Heat Transfer, Part A: Applications, 2014. 66(5): p. 509-529. [Google Scholar]
  22. Ayoubi Ayoubloo, K., et al., Pseudoplastic natural convection flow and heat transfer in a cylindrical vertical cavity partially filled with a porous layer. International Journal of Numerical Methods for Heat & Fluid Flow, 2019. 30(3): p. 1096-1114. [Google Scholar]
  23. Ghalambaz, M., K. Ayoubi Ayoubloo, and A. Hajjar, Melting heat transfer of a non-Newtonian phase change material in a cylindrical vertical-cavity partially filled porous media. International Journal of Numerical Methods for Heat & Fluid Flow, 2019. 30(7): p. 3765-3789. [Google Scholar]
  24. Lallemand, P. and L.-S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability. Physical Review E, 2000. 61(6): p. 6546-6562. [Google Scholar]
  25. Hireche, Z., L. Nasseri, and D.E. Ameziani, Study of Periodic Thermal Exchange in a Cavity Ventilated by Displacement. Arabian Journal for Science and Engineering, 2020. 45(7): p. 5751-5768. [Google Scholar]
  26. Hireche, Z., L. Nasseri, and D.E.J.E.P.J.A.P. Ameziani, Heat transfer analysis of a ventilated room with a porous partition: LB-MRT simulations ★. 2020. 91(2): p. 20904. [Google Scholar]
  27. Abdelkader, B., et al., Lattice Boltzmann simulation of natural convection in cubical enclosures for Bingham plastic fluid. Heat Transfer Research, 2017. 48. [Google Scholar]
  28. Nasseri, L., et al., Numerical study of mixed convection in a ventilated square enclosure with the lattice Boltzmann method. 2019. 75(10): p. 674-689. [Google Scholar]
  29. Nasseri, L., et al., Study of mixed convection in closed enclosure with a ceiling fan. 2019. 86(2): p. 20902. [Google Scholar]
  30. Malaspinas, O., G. Courbebaisse, and M. Deville, Simulation of Generalized Newtonian Fluids with the Lattice Boltzmann Method. 2007. 18: p. 1939. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.