Open Access
Issue
E3S Web Conf.
Volume 323, 2021
V International Scientific and Technical Conference Modern Power Systems and Units (MPSU 2021)
Article Number 00029
Number of page(s) 7
DOI https://doi.org/10.1051/e3sconf/202132300029
Published online 10 November 2021
  1. Cogeneration & Trigeneration - How to produce energy efficiently. A practical guide for experts in emerging and developing economies. Zellner, S., Burgtorf, J., Kraft-Schäfer, D. (eds.) Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 144p. (2016) [Google Scholar]
  2. K. Gluesenkamp, Y. Hwang, R. Radermacher, Applied Thermal Engineering 50, 6 p. (2013) [Google Scholar]
  3. CIMAC position paper gas engine aftertreatment systems by CIMAC WG 17, Gas Engines, May 2017. https://www.cimac.com/cms/upload/Publication_Press/WG_Publications/CIMAC_WG17_2017_Aug_Position_Paper_Gas_Engine_Aftertreatment_Systems.pdf. [Google Scholar]
  4. Jenbacher: http://www.intma.ru/energetica/power_stations/thermal_ps_trigeneration_ru.html. [Google Scholar]
  5. S. Forduy, A. Radchenko, W. Kuczynski, A. Zubarev, D. Konovalov, Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air, in Advanced Manufacturing Processes, InterPartner-2019, LNME, pp. 500–509 (2020) [Google Scholar]
  6. A. Radchenko, D. Mikielewicz, S. Forduy, M. Radchenko, A. Zubarev, Monitoring the fuel efficiency of gas engine in integrated energy system, in Integrated Computer Technologies in Mechanical Engineering (ICTM 2019). AISC, 1113, pp. 361–370 (2020) [Google Scholar]
  7. A. Radchenko, I-C. Scurtu, M. Radchenko, S. Forduy, A. Zubarev, Monitoring the efficiency of cooling air at the inlet of gas engine in integrated energy system, Thermal Science 2020 OnLineFirst Issue 00, 344–344 https://doi.org/10.2298/TSCI200711344R [Google Scholar]
  8. A. Radchenko, E. Trushliakov, V. Tkachenko, B. Portnoi, O. Prjadko, Improvement of the refrigeration capacity utilizing for the ambient air conditioning system, in Advanced Manufacturing Processes II, InterPartner 2020, LNME, pp. 714–723 (2021) [Google Scholar]
  9. M. Radchenko, M. Radchenko, A. Radchenko, R. Radchenko, S. Kantor, D. Konovalov, V. Kornienko, Rational loads of turbine inlet air absorption-ejector cooling systems, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy (2021). https://doi.org/10.1177/09576509211045455 [Google Scholar]
  10. R. Radchenko, N. Radchenko, A. Tsoy, S. Forduy, A. Zybarev, I. Kalinichenko, Utilizing the heat of gas module by an absorption lithium-bromide chiller with an ejector booster stage, in AIP Conference Proceedings, 2285, 030084 (2020) [Google Scholar]
  11. E. Trushliakov, A. Radchenko, S. Forduy, A. Zubarev, A. Hrych, Increasing the operation efficiency of air conditioning system for integrated power plant on the base of its monitoring, in Integrated Computer Technologies in Mechanical Engineering (ICTM 2019), AISC, 1113, pp. 351–360 (2020) [Google Scholar]
  12. A. Canova, C. Cavallero, F. Freschi, L. Giaccone, M. Repetto, M. Tartaglia, IEEE Industry Applications Magazine 15, 62 (2009) [Google Scholar]
  13. J. Ortiga, J.C. Bruno, A. Coronas, Applied Thermal Engineering 50, 1536 (2013) [Google Scholar]
  14. A. Radchenko, A. Stachel, S. Forduy, B. Portnoi, O. Rizun, Analysis of the efficiency of engine inlet air chilling unit with cooling towers, in Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, pp. 322–331 (2020) [Google Scholar]
  15. A. Radchenko, N. Radchenko, A. Tsoy, B. Portnoi, S. Kantor, Increasing the efficiency of gas turbine inlet air cooling in actual climatic conditions of Kazakhstan and Ukraine, in AIP Conference Proceedings 2285, 030071 (2020) [Google Scholar]
  16. M. Radchenko, D. Mikielewicz, A. Andreev, S. Vanyeyev, O. Savenkov, Efficient ship engine cyclic air cooling by turboexpander chiller for tropical climatic conditions, in Integrated Computer Technologies in Mechanical Engineering (ICTM 2020), LNNS, 188, pp. 498–507 (2021) [Google Scholar]
  17. S.B. Kalhori, H. Rabiei, Z. Mansoori, Energy Conv. Manag. 60, 106 (2012) [Google Scholar]
  18. J.L. Forsyth, Gas turbine inlet air chilling for LNG, in IGT International Liquefied Natural Gas Conference Proceedings 3, pp. 1763–1778 (2013) [Google Scholar]
  19. D. Konovalov, H. Kobalava, M. Radchenko, I.-C. Scurtu, V. Sviridov, Determination of the evaporation chamber optimal length of a low-flow aerothermopressor for gas turbines, in Advanced Manufacturing Processes II, InterPartner 2020, LNME, pp. 654–663 (2021) [Google Scholar]
  20. D. Konovalov, H. Kobalava, M. Radchenko, I.C. Scurtu, R. Radchenko, Determination of hydraulic resistance of the aerothermopressor for gas turbine cyclic air cooling, in TE-RE-RD 2020, E3S Web of Conferences, 180, 01012 (2020) [Google Scholar]
  21. D. Konovalov, H. Kobalava, V. Maksymov, R. Radchenko, M. Avdeev, Experimental research of the excessive water injection effect on resistances in the flow part of a low-flow aerothermopressor, in Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, pp. 292–301 (2020) [Google Scholar]
  22. D. Butrymowicz, J. Gagan, K. Smierciew, M. Lukaszuk, A. Dudar, A. Pawluczuk, A. Lapinski, A. Kurylowic, Investigations of prototype ejection refrigeration system driven by low grade heat, in HTRSE-2018, E3S Web of Conferences, 70, 7 p. (2018) [Google Scholar]
  23. K. Smierciew, J. Gagan, D. Butrymowicz, J. Karwacki, Energy and Buildings 80, 260 (2014) [Google Scholar]
  24. R. Radchenko, M. Pyrysunko, A. Radchenko, A. Andreev, V. Kornienko, Ship engine intake air cooling by ejector chiller using recirculation gas heat, in Advanced Manufacturing Processes. InterPartner-2020, LNME, pp. 734–743 (2021) [Google Scholar]
  25. R. Radchenko, M. Pyrysunko, V. Kornienko, I.-C. Scurtu, R. Patyk, Improving the ecological and energy efficiency of internal combustion engines by ejector chiller using recirculation gas heat, In Integrated Computer Technologies in Mechanical Engineering (ICTM 2020), LNNS, 188, pp. 531–541 (2021) [Google Scholar]
  26. D. Mikielewicz, M. Klugmann, J. Wajs, International Journal of Thermal Sciences 65, 79 (2013) [Google Scholar]
  27. T. Bohdal, W. Kuczynski, Heat Transf. Eng. 32, 359 (2011) [Google Scholar]
  28. N.I. Radchenko, International Journal of Refrigeration 8(5), 267 (1985) [Google Scholar]
  29. E. Trushliakov, M. Radchenko, T. Bohdal, R. Radchenko, S. Kantor, An innovative air conditioning system for changeable heat loads, in Advanced Manufacturing Processes, InterPartner-2019, LNME, pp. 616–625 (2020) [Google Scholar]
  30. V. Kornienko, M. Radchenko, R. Radchenko, D. Konovalov, A. Andreev, M. Pyrysunko, Improving the efficiency of heat recovery circuits of cogeneration plants with combustion of waterfuel emulsions. Thermal Science 25 (1 Part B), 791–800 (2021) [Google Scholar]
  31. V. Kornienko, R. Radchenko, D. Konovalov, A. Andreev, M. Pyrysunko, Characteristics of the rotary cup atomizer used as afterburning installation in exhaust gas boiler flue, in Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, pp. 302–311 (2020) [Google Scholar]
  32. V. Kornienko, R. Radchenko, D. Mikielewicz, M. Pyrysunko, A. Andreev, Improvement of characteristics of water-fuel rotary cup atomizer in a boiler, in Advanced Manufacturing Processes. InterPartner-2020, LNME, pp. 664–674 (2021) [Google Scholar]
  33. V. Kornienko, R. Radchenko, L. Bohdal, L. Kukielka, S. Legutko, Investigation of condensing heating surfaces with reduced corrosion of boilers with water-fuel emulsion combustion, in Integrated Computer Technologies in Mechanical Engineering (ICTM 2020), LNNS, 188, pp. 300–309 (2021) [Google Scholar]
  34. M. Radchenko, R. Radchenko, V. Kornienko, M. Pyrysunko, Semi-empirical correlations of pollution processes on the condensation surfaces of exhaust gas boilers with water-fuel emulsion combustion, in Advances in Design, Simulation and Manufacturing II (DSMIE 2019), LNME, pp. 853–862 (2020) [Google Scholar]
  35. L. Bohdal, L. Kukielka, A.M. Radchenko, R. Patyk, M. Kulakowski, J. Chodór. Modelling of guillotining process of grain oriented silicon steel using FEM, in AIP Conference Proceeding 2078, 020080 (2019) [Google Scholar]
  36. L. Bohdal, L. Kukielka, S. Swillo, A.M. Radchenko, A. Kulakowska, Modelling and experimental analysis of shear-slitting process of light metal alloys using FEM, SPH and visionbased methods, in AIP Conference Proceedings 2078, 020060 (2019) [Google Scholar]
  37. L. Bohdal, L. Kukielka, S. Legutko, R. Patyk, A.M. Radchenko, Materials 13, 3175 (2020) [Google Scholar]
  38. M. Radchenko, R. Radchenko, V. Tkachenko, S. Kantor, E. Smolyanoy, Increasing the operation efficiency of railway air conditioning system on the base of its simulation along the route line, in Integrated Computer Technologies in Mechanical Engineering (ICTM 2019), AISC, 1113, pp. 461–467 (2020) [Google Scholar]
  39. E. Trushliakov, A. Radchenko, M. Radchenko, S. Kantor, O. Zielikov, The Efficiency of refrigeration capacity regulation in the ambient air conditioning system, in Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, pp. 343–353 (2020) [Google Scholar]
  40. M. Radchenko, D. Mikielewicz, V. Tkachenko, M. Klugmann, A. Andreev, Enhancement of the operation efficiency of the transport air conditioning system, in Advances in Design, Simulation and Manufacturing III (DSMIE 2020), LNME, pp. 332–342 (2020) [Google Scholar]
  41. N. Radchenko, E. Trushliakov, A. Radchenko, A. Tsoy, O. Shchesiuk, Methods to determine a design cooling capacity of ambient air conditioning systems in climatic conditions of Ukraine and Kazakhstan, in AIP Conference Proceedings, 2285, 030074 (2020) [Google Scholar]
  42. N. Radchenko, A. Radchenko, A. Tsoy, D. Mikielewicz, S. Kantor, V. Tkachenko, Improving the efficiency of railway conditioners in actual climatic conditions of operation, in AIP Conference Proceedings, 2285, 030072 (2020) [Google Scholar]
  43. R. Radchenko, M. Pyrysunko, V. Kornienko, D. Konovalov, O. Girzheva, Enhancing energy efficiency of ship diesel engine with gas ecological recirculation, in Advances in Design, Simulation and Manufacturing IV (DSMIE 2021), LNME, pp. 391–400 (2021) [Google Scholar]
  44. A. Radchenko, E. Trushliakov, K. Kosowski, D. Mikielewicz, M. Radchenko, Energies 13, 6201 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.