Open Access
Issue
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
Article Number 04013
Number of page(s) 8
Section Fuel Cell Technologies
DOI https://doi.org/10.1051/e3sconf/202233404013
Published online 10 January 2022
  1. C. Deniz, B. Zincir, Environmental and economical assessment of alternative marine fuels, J. Clean. Prod. 113 (2016) 438–449. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.11.089. [CrossRef] [Google Scholar]
  2. International Maritime Organization, Fourth IMO GHG Study 2020, 2021. https://www.imo.org/en/OurWork/Environment/Pages/Fourth-IMO-Greenhouse-Gas-Study-2020.aspx. [Google Scholar]
  3. O.B. Inal, C. Deniz, Assessment of fuel cell types for ships: Based on multi-criteria decision analysis, J. Clean. Prod. 265 (2020) 121734. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.121734. [CrossRef] [Google Scholar]
  4. F. Murena, L. Mocerino, F. Quaranta, D. Toscano, Impact on air quality of cruise ship emissions in Naples, Italy, Atmos. Environ. 187 (2018) 70–83. https://doi.org/https://doi.org/10.1016/j.atmosenv.2018.05.056. [CrossRef] [Google Scholar]
  5. B. Dragović, E. Tzannatos, V. Tselentis, R. Meštrović, M. Škurić, Ship emissions and their externalities in cruise ports, Transp. Res. Part D Transp. Environ. 61 (2018) 289–300. https://doi.org/https://doi.org/10.1016/j.trd.2015.11.007. [CrossRef] [Google Scholar]
  6. H. Xing, C. Stuart, S. Spence, H. Chen, Fuel Cell Power Systems for Maritime Applications: Progress and Perspectives, Sustain. 13 (2021). https://doi.org/10.3390/su13031213. [Google Scholar]
  7. O.B. Inal, C. Deniz, Emission Analysis of LNG Fuelled Molten Carbonate Fuel Cell System for a Chemical Tanker Ship: A Case Study, Mar. Sci. Technol. Bull. 10 (2021) 118–133. https://doi.org/https://doi.org/10.33714/masteb.827195. [Google Scholar]
  8. A. Haseltalab, L. van Biert, H. Sapra, B. Mestemaker, R.R. Negenborn, Component sizing and energy management for SOFC-based ship power systems, Energy Convers. Manag. 245 (2021) 114625. https://doi.org/https://doi.org/10.1016/j.enconman.2021.114625. [CrossRef] [Google Scholar]
  9. P. Wu, R. Bucknall, Hybrid fuel cell and battery propulsion system modelling and multi-objective optimisation for a coastal ferry, Int. J. Hydrogen Energy. 45 (2020) 3193–3208. https://doi.org/https://doi.org/10.1016/j.ijhydene.2019.11.152. [CrossRef] [Google Scholar]
  10. Zemships. One Hundred Passengers and Zero Emissions: The First Ever Passenger Vessel to Sail Propelled by Fuel Cells., n.d. https://webgate.ec.europa.eu/life/publicWebsite/index.cfm?fuseaction=search.dspPage&n_proj_id=3081. [Google Scholar]
  11. E. Ovrum, G. Dimopoulos, A validated dynamic model of the first marine molten carbonate fuel cell, Appl. Therm. Eng. 35 (2012) 15–28. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2011.09.023. [CrossRef] [Google Scholar]
  12. C. Strazza, A. Del Borghi, P. Costamagna, A. Traverso, M. Santin, Comparative LCA of methanol-fuelled SOFCs as auxiliary power systems on-board ships, Appl. Energy. 87 (2010) 1670–1678. https://doi.org/https://doi.org/10.1016/j.apenergy.2009.10.012. [Google Scholar]
  13. I. EG&G Technical Services, Fuel Cell Handbook, Fuel Cell. (2004). https://doi.org/10.1002/zaac.200300050. [Google Scholar]
  14. M. Buga, M. Balan, I. Iordache, M. Varlam, A comparative simulation and sensitivity analysis study of hydrogen production by steam methane reforming, Prog. Cryog. Isot. Sep. 17 (2014) 15–22. https://link.gale.com/apps/doc/A434414210/AONE?u=anon~dcc0994f&sid=googleScholar&xid=8927d964 [Google Scholar]
  15. K. Yang, Y. Ban, A. Guo, M. Zhao, Y. Zhou, N. Cao, W. Yang, In-situ interfacial assembly of ultra-H2-permeable metal-organic framework membranes for H2/CO2 separation, J. Memb. Sci. 611 (2020) 118419. https://doi.org/https://doi.org/10.1016/j.memsci.2020.118419. [CrossRef] [Google Scholar]
  16. F.R. Bianchi, A. Baldinelli, L. Barelli, G. Cinti, E. Audasso, B. Bosio, Multiscale modeling for reversible solid oxide cell operation, Energies. 13 (2020). https://doi.org/10.3390/en13195058. [CrossRef] [Google Scholar]
  17. T.A. Barckholtz, H. Elsen, P.H. Kalamaras, G. Kiss, J. Rosen, D. Bove, E. Audasso, B. Bosio, Experimental and Modeling Investigation of CO3=/OH–Equilibrium Effects on Molten Carbonate Fuel Cell Performance in Carbon Capture Applications, Front. Energy Res. 9 (2021) 235. https://www.frontiersin.org/article/10.3389/fenrg.2021.669761. [CrossRef] [Google Scholar]
  18. E. Audasso, B. Bosio, D. Bove, E. Arato, T. Barckholtz, G. Kiss, J. Rosen, H. Elsen, R. Blanco Gutierrez, L. Han, T. Geary, C. Willman, A. Hilmi, C.Y. Yuh, H. Ghezel-Ayagh, New, dual-anion mechanism for Molten Carbonate Fuel Cells working as carbon capture devices, J. Electrochem. Soc. (2020). https://doi.org/https://doi.org/10.1149/1945-7111/ab8979. [Google Scholar]
  19. E. Audasso, B. Bosio, D. Bove, E. Arato, T. Barckholtz, G. Kiss, J. Rosen, H. Elsen, R. Blanco Gutierrez, L. Han, T. Geary, C. Willman, A. Hilmi, C.Y. Yuh, H. Ghezel-Ayagh, The effects of gas diffusion in Molten Carbonate Fuel Cells working as carbon capture devices, J. Electrochem. Soc. 167 (2020) 114515. https://doi.org/https://doi.org/10.1149/1945-7111/aba8b6. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.