Open Access
Issue
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
Article Number 08001
Number of page(s) 6
Section Microbial & Enzymatic Biolectrochemical Systems
DOI https://doi.org/10.1051/e3sconf/202233408001
Published online 10 January 2022
  1. N. Kaku, N. Yonezawa, Y. Kodama, et K. Watanabe, « Plant/microbe cooperation for electricity generation in a rice paddy field », Appl Microbiol Biotechnol, vol. 79, no 1, p. 43 49, mai 2008, doi: 10.1007/s00253-008-1410-9. [CrossRef] [PubMed] [Google Scholar]
  2. T. S. Walker, H. P. Bais, E. Grotewold, et J. M. Vivanco, « Root Exudation and Rhizosphere Biology », Plant Physiology, vol. 132, no 1, p. 44 51, mai 2003, doi: 10.1104/pp.102.019661. [CrossRef] [PubMed] [Google Scholar]
  3. K. Wetser, E. Sudirjo, C. J. N. Buisman, et D. P. B. T. B. Strik, « Electricity generation by a plant microbial fuel cell with an integrated oxygen reducing biocathode », Applied Energy, vol. 137, p. 151 157, janv. 2015, doi: 10.1016/j.apenergy.2014.10.006. [CrossRef] [Google Scholar]
  4. D. P. B. T. B. Strik, R. A. Timmers, M. Helder, K. J. J. Steinbusch, H. V. M. Hamelers, et C. J. N. Buisman, « Microbial solar cells: applying photosynthetic and electrochemically active organisms », Trends in Biotechnology, vol. 29, no 1, p. 41 49, janv. 2011, doi: 10.1016/j.tibtech.2010.10.001. [CrossRef] [PubMed] [Google Scholar]
  5. W. H. Tan et al., « Microbial Fuel Cell Technology—A Critical Review on Scale-Up Issues », Processes, vol. 9, no 6, Art. no 6, juin 2021, doi: 10.3390/pr9060985. [Google Scholar]
  6. K. R. S. Pamintuan, J. A. A. Clomera, K. V. Garcia, G. R. Ravara, et E. J. G. Salamat, « Stacking of aquatic plant-microbial fuel cells growing water spinach (Ipomoea aquatica) and water lettuce (Pistia stratiotes) », IOP Conf. Ser.: Earth Environ. Sci., vol. 191, p. 012054, nov. 2018, doi: 10.1088/1755-1315/191/1/012054. [CrossRef] [Google Scholar]
  7. P. Chiranjeevi, G. Mohanakrishna, et S. Venkata Mohan, « Rhizosphere mediated electrogenesis with the function of anode placement for harnessing bioenergy through CO2 sequestration », Bioresource Technology, vol. 124, p. 364 370, nov. 2012, doi: 10.1016/j.biortech.2012.08.020. [CrossRef] [PubMed] [Google Scholar]
  8. P. J. Sarma et K. Mohanty, « Epipremnum aureum and Dracaena braunii as indoor plants for enhanced bio-electricity generation in a plant microbial fuel cell with electrochemically modified carbon fiber brush anode », Journal of Bioscience and Bioengineering, vol. 126, no 3, p. 404 410, sept. 2018, doi: 10.1016/j.jbiosc.2018.03.009. [CrossRef] [PubMed] [Google Scholar]
  9. M. A. Moqsud, J. Yoshitake, Q. S. Bushra, M. Hyodo, K. Omine, et D. Strik, « Compost in plant microbial fuel cell for bioelectricity generation », Waste Management, vol. 36, p. 63 69, févr. 2015, doi: 10.1016/j.wasman.2014.11.004. [CrossRef] [Google Scholar]
  10. K. Wetser, J. Liu, C. Buisman, et D. Strik, « Plant microbial fuel cell applied in wetlands: Spatial, temporal and potential electricity generation of Spartina anglica salt marshes and Phragmites australis peat soils », Biomass and Bioenergy, vol. 83, p. 543 550, déc. 2015, doi: 10.1016/j.biombioe.2015.11.006. [CrossRef] [Google Scholar]
  11. N. Degrenne, « Gestion de l’énergie des piles à combustible microbiennes », 2012. [Google Scholar]
  12. K. Takanezawa, K. Nishio, S. Kato, K. Hashimoto, et K. Watanabe, « Factors Affecting Electric Output from Rice-Paddy Microbial Fuel Cells », Bioscience, Biotechnology, and Biochemistry, vol. 74, no 6, p. 1271 1273, 2010, doi: 10.1271/bbb.90852. [CrossRef] [PubMed] [Google Scholar]
  13. M. Helder, D. P. B. T. B. Strik, H. V. M. Hamelers, R. C. P. Kuijken, et C. J. N. Buisman, « New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell », Bioresource Technology, vol. 104, p. 417 423, janv. 2012, doi: 10.1016/j.biortech.2011.11.005. [CrossRef] [PubMed] [Google Scholar]
  14. N. F. Tapia, C. Rojas, C. A. Bonilla, et I. T. Vargas, « A New Method for Sensing Soil Water Content in Green Roofs Using Plant Microbial Fuel Cells », Sensors, vol. 18, no 1, p. 71, janv. 2018, doi: 10.3390/s18010071. [Google Scholar]
  15. C. Xia, D. Zhang, W. Pedrycz, Y. Zhu, et Y. Guo, « Models for Microbial Fuel Cells: A critical review », Journal of Power Sources, vol. 373, p. 119 131, janv. 2018, doi: 10.1016/j.jpowsour.2017.11.001. [CrossRef] [Google Scholar]
  16. K. Rabaey et al., « Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells », ISME Journal, vol. 2, no 5, p. 519 527, 2008, doi: 10.1038/ismej.2008.1. [CrossRef] [PubMed] [Google Scholar]
  17. M. Helder, « Design criteria for the Plant-Microbial Fuel Cell », 2012. [Google Scholar]
  18. R. A. Timmers, D. P. B. T. B. Strik, H. V. M. Hamelers, et C. J. N. Buisman, « Electricity generation by a novel design tubular plant microbial fuel cell », Biomass and Bioenergy, vol. 51, p. 60 67, avr. 2013, doi: 10.1016/j.biombioe.2013.01.002. [CrossRef] [Google Scholar]
  19. J.-Y. Nam, H.-W. Kim, K.-H. Lim, H.-S. Shin, et B. E. Logan, « Variation of power generation at different buffer types and conductivities in single chamber microbial fuel cells », Biosensors and Bioelectronics, vol. 25, no 5, p. 1155 1159, janv. 2010, doi: 10.1016/j.bios.2009.10.005. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.