Open Access
Issue |
E3S Web Conf.
Volume 336, 2022
The International Conference on Energy and Green Computing (ICEGC’2021)
|
|
---|---|---|
Article Number | 00078 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202233600078 | |
Published online | 17 January 2022 |
- « Les prévisions de l’AIE pour 2021 : « un sombre avertissement » | Connaissances des énergies », avr. - 12:00 2021. https://www.connaissancedesenergies.org/lesprevisions-de-laie-pour-2021-un-sombre-avertissement-210421 (consulté le sept. 12, 2021). [Google Scholar]
- « Tracking Transport 2020 – Analysis », IEA. https://www.iea.org/reports/tracking-transport-2020 (consultéle nov. 01, 2021). [Google Scholar]
- O. Mazurova et E. Galperova, « Energy Consumption in the Transport Sector: Trends and Forecast Estimates », in 2018 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, oct. 2018, p. 1-7. doi: 10.1109/FarEastCon.2018.8602478. [Google Scholar]
- « AMEE | Transport ». https://www.amee.ma/fr/expertise/transport (consulté le sept. 12, 2021). [Google Scholar]
- « Transport – Topics », IEA. https://www.iea.org/topics/transport (consulté le sept. 13, 2021). [Google Scholar]
- Z. W. Geem, « Transport energy demand modeling of South Korea using artificial neural network », Energy Policy, vol. 39, no 8, p. 4644-4650, août 2011, doi: 10.1016/j.enpol.2011.05.008. [CrossRef] [Google Scholar]
- M. Zhang, H. Mu, G. Li, et Y. Ning, « Forecasting the transport energy demand based on PLSR method in China », Energy, vol. 34, no 9, p. 1396‑1400, sept. 2009, doi: 10.1016/j.energy.2009.06.032. [CrossRef] [Google Scholar]
- M. Maduekwe, U. Akpan, et S. Isihak, « Road transport energy consumption and vehicular emissions in Lagos, Nigeria: An application of the LEAP model », Transportation Research Interdisciplinary Perspectives, vol. 6, p. 100172, juill. 2020, doi: 10.1016/j.trip.2020.100172. [CrossRef] [Google Scholar]
- V. Plakandaras, T. Papadimitriou, et P. Gogas, « Forecasting transportation demand for the U.S. market », Transportation Research Part A: Policy and Practice, vol. 126, p. 195-214, août 2019, doi: 10.1016/j.tra.2019.06.008. [CrossRef] [Google Scholar]
- A. Kialashaki et J. R. Reisel, « Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks », Applied Energy, vol. 108, p. 271-280, août 2013, doi: 10.1016/j.apenergy.2013.03.034. [CrossRef] [Google Scholar]
- S. Guefano, J. G. Tamba, T. E. W. Azong, et L. Monkam, « Forecast of electricity consumption in the Cameroonian residential sector by Grey and vector autoregressive models », Energy, vol. 214, p. 118791, janv. 2021, doi: 10.1016/j.energy.2020.118791. [CrossRef] [Google Scholar]
- M. Gholami, D. Torreggiani, P. Tassinari, et A. Barbaresi, « Narrowing uncertainties in forecasting urban building energy demand through an optimal archetyping method », Renewable and Sustainable Energy Reviews, vol. 148, p. 111312, sept. 2021, doi: 10.1016/j.rser.2021.111312. [CrossRef] [Google Scholar]
- O. F. Beyca, B. C. Ervural, E. Tatoglu, P. G. Ozuyar, et S. Zaim, « Using machine learning tools for forecasting natural gas consumption in the province of Istanbul », Energy Economics, vol. 80, p. 937-949, mai 2019, doi: 10.1016/j.eneco.2019.03.006. [CrossRef] [Google Scholar]
- N. Somu, G. Raman M R, et K. Ramamritham, « A deep learning framework for building energy consumption forecast », Renewable and Sustainable Energy Reviews, vol. 137, p. 110591, mars 2021, doi: 10.1016/j.rser.2020.110591. [CrossRef] [Google Scholar]
- Nhat Hai Nguyen, « Développement de méthodes intelligentes pour la gestion énergétique des bâtiments, utilisant des capteurs sans fil », de Grenoble, l’École Doctorale «Electronique, Electrotechnique, Automatique, Télécommunication et Signal », 2011. [Google Scholar]
- M. Kharbach et T. Chfadi, « CO2 emissions in Moroccan road transport sector: Divisia, Cointegration, and EKC analyses », Sustainable Cities and Society, vol. 35, p. 396-401, nov. 2017, doi: 10.1016/j.scs.2017.08.016. [CrossRef] [Google Scholar]
- Y. Maaroufi, « Open Data », Site institutionnel du Haut-Commissariat au Plan du Royaume du Maroc. https://www.hcp.ma/Open-Data_a2401.html (consulté le nov. 02, 2021). [Google Scholar]
- « Data overview », IEA. https://www.iea.org/data-andstatistics (consulté le sept. 13, 2021). [Google Scholar]
- S. A. Nabavi, A. Aslani, M. A. Zaidan, M. Zandi, S. Mohammadi, et N. Hossein Motlagh, « Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors », Energies, vol. 13, no 19, p. 5171, oct. 2020, doi: 10.3390/en13195171. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.