Open Access
E3S Web Conf.
Volume 343, 2022
52nd AiCARR International Conference “HVAC and Health, Comfort, Environment - Equipments and Design for IEQ and Sustainability”
Article Number 03005
Number of page(s) 14
Section HVAC Impact on Comfort and Health of Occupants and Operators
Published online 08 March 2022
  1. Klepeis, N. et al. 2001. Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. Journal of Exposure Analysis and Environmental Epidemiology. Vol. 11, pp 231–252. [CrossRef] [Google Scholar]
  2. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. [Google Scholar]
  3. Liang, F. et al. 2020. Long-Term Exposure to Fine Particulate Matter and Cardiovascular Disease in China. Journal of the American College of Cardiology. Vol. 75-7, pp 707–717. [Google Scholar]
  4. Hakan, L. et al. 2008. Particulate Matter (PM2.5, PM10-2.5 and PM10) and Children’s Hospital admission for Asthma and Respiratory Diseases: A Bidirectional Case-Crossover Study. Journal of Toxicology and Environmental Health. Vol. 71–8. [Google Scholar]
  5. Hou, D. et al. 2020. Associations of long-term exposure to ambient fine particulate matter and nitrogen dioxide with lung function: A cross-sectional study in China. Environmental International. Vol. 144. [Google Scholar]
  6. Wang, M. et al. 2020. The association between PM2.5 exposure and daily outpatient visits for allergic rhinitis: evidence from a seriously air-polluted environment. International Journal of Biometeorology. Vol. 64, pp 139–144. [CrossRef] [PubMed] [Google Scholar]
  7. Raaschou-Nielsen, O. et al. 2016. Particulate matter air pollution components and risk for lung cancer. Environmental International. Vol. 87, pp 66–73. [CrossRef] [Google Scholar]
  8. WHO. 2005. Occupational and Environmental Health Team. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. Global update 2005 Summary of risk assessment. [Google Scholar]
  9. Schwartz, A. and Martínez-Sánchez, G. 2020. Potential use of ozone in SARS-CoV-2 / COVID-19. International Scientific Committee of Ozone Therapy. ISCO3.ISCO3/EPI/00/04. [Google Scholar]
  10. Productos virucidas autorizados en España. 2020. Secretaría de Estado de Sanidad. Subdirección General de Sanidad Ambiental y Salud Laboral. [Google Scholar]
  11. UNE 400201:1994. Generadores de ozono. Tratamiento de aire. Seguridad química. [Google Scholar]
  12. Buonanno, M., Welch, D., Shuryak, I. and Brenner D. J. Far-UVC light (222 nm) efficiently and safely inactivates airborne human coronaviruses. 2020. Scientific reports. Vol 10: 10285 | [CrossRef] [PubMed] [Google Scholar]
  13. Kowalski, W., Walsh, T. and Petraitis, V. 2020 COVID-19 Coronavirus Ultraviolet Susceptibility. 2020. Researchgate Technical Report. DOI: 10.13140/RG.2.2.22803.22566. [Google Scholar]
  14. Ghatge, N. and Vernekar, S. 1971. Evaluation of ultraviolet light absorbers in poly vinyl chloride (PVC). Macromolecular Materials and Engineering. Vol. 20-1, pp 175–180. [Google Scholar]
  15. Directive 2006/25/EC. Minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation). [Google Scholar]
  16. Takehara, K., Yamazaki, K., Miyazaki, M., Yamada, Y., Ruenphet, S., Jahangir, A, Shoham, D., Okamura, M., Nakamura, M. 2010. Inactivation of avian influenza virus H1N1 by photocatalyst under visible light irradiation. Virus Res., Vol. 151, pp 102-103. [CrossRef] [Google Scholar]
  17. EN ISO 16890: 2016. Air filters for general ventilation -Part 1: Technical specifications, requirements and classification system based upon particulate matter efficiency (ePM). [Google Scholar]
  18. Tanaka A. and Zhang, Y. 1996. Dust settling efficiency and electrostatic effect of a negative ionization system. Journal of Agricultural Safety and Health. Vol. 2-1, pp 39–47. [CrossRef] [Google Scholar]
  19. Mayya, Y. S., Sapra, B. K., Khan, A. and Sunny, F. 2004. Aerosol removal by unipolar ionization in indoor environments. Journal of Aerosol Science. Vol.35-8, pp 923–941. [CrossRef] [Google Scholar]
  20. Sawant, V.S. 2013. Removal of particulate matter by using negative electric discharge. International Journal of Engineering and Innovative Technology. Vol. 2, pp 48–51. [Google Scholar]
  21. Pushpawela, B., Jayaratne, R., Nguy, A and Morawska, L. 2017. Efficiency of ionizers in removing airbone particles in indoor environments. Journal of Electronics. Vol. 90, pp 79–84. [CrossRef] [Google Scholar]
  22. Lee, B. U., Yermakov, M. and Grinshpun, S. A. 2004. Removal of fine and ultrafine particles indoor air environment by the unipolar ion emission. Atmospheric Environment. Vol 38, pp 4815–4823. [CrossRef] [Google Scholar]
  23. Cutis, N. J., Woodfolk, J. A., Vaughan, J. W. and Platts-Mills, T. A. E. 2003. Quantitative measurement of airbone allergens from dust mites, dogs, and cats using an ion-charging device. Clinical & Experimental Allergy. Vol. 33, pp 986–991. [CrossRef] [Google Scholar]
  24. Goodman, N. and Hughes, J. F. 2004. The effect of corona discharge on dust mite and cat allergens. Journal of Electrostatics. Vol. 60, pp 69–91. [CrossRef] [Google Scholar]
  25. Sawant, V. S., Meena, G. S. and Jadhav, D. B. 2012. Effect of negative air ions on fog and smoke. Aerosol and Air Quality Research. Vol 12, pp 1007–1015. [CrossRef] [Google Scholar]
  26. Kawamoto, S., Oshita, M., Fukuoka, N., Shigeta, S., Aki, T., Hayashi, T., Nishikawa, K. and Ono, K. 2006. Decrease in the Allergenicity of Japanese Cedar Pollen Allergen by Treatment with Positive and Negative Cluster Ions. International archives of allergy and immunology. Vol.141-4, pp 313–321. [CrossRef] [PubMed] [Google Scholar]
  27. Wu, C. C. and Lee, G. W. M. 2004. Oxidation of Volatile Organic Compounds by Negative Air Ions. Atmospheric Environment. Vol.38, pp 6287–6295. [CrossRef] [Google Scholar]
  28. Kim, K., Szulejko, J. E., Kumar, P., Kwon, E.E. and Adelodun, A. A. 2017. Air ionization as a control technology for off-gas emissions of volatile. Environmental Pollution. Vol. 225, pp 729–243. [CrossRef] [Google Scholar]
  29. Phillips, G., Harris, G. J. and Jones, M. W. 1964. Effects of air ions on bacterial aerosols. International Journal of Biometeorology. Vol.8, pp 27–37. [CrossRef] [PubMed] [Google Scholar]
  30. Zhoua, P., Yangc, Y., Huang, G. and Laib, C. K. 2018. Numerical and experimental study on airborne disinfection by negative ions in air duct flow. Building and Environmental. Vol. 127, pp 204–210. [CrossRef] [Google Scholar]
  31. Tyagi, A. K., Nirala, B. K., Malik, A. and Singh, K. 2008. The effect of negative air ion exposure on Escherichia coli and Pseudomonas fluorescens. Journal of Environmental Science and Health. Toxic/Hazardous Substances and Environmental Engineering. Vol. 43, pp 694–699. [Google Scholar]
  32. Noyce, J. O. and Hughes, J. F. 2002. Bactericidal effects of negative and positive ions generated in nitrogen on Escherichia coli. Journal of Electrostatics. Vol. 54, pp 179–187. [CrossRef] [Google Scholar]
  33. Shargawi, J. M., Theaker, E. D., Drucker, D. B., MacFarlane, T. and Duxbury A. J. 1999. Sensitivity of Candida albicans to negative air ion streams. Journal Applied Microbiology. Vol. 87, pp 889–897. [CrossRef] [PubMed] [Google Scholar]
  34. Dobrynin, D., Friedman, G., Fridman, A. and Starikovskiy, A. 2011. Inactivation of bacteria using DC corona discharge: Role of ions and humidity. New Journal of Physics. Vol. 13. [Google Scholar]
  35. Timoshkin, I. V., Maclean, M., Wilson, M. P., Given, M. J., MacGregor, S. J., Wang, T. and Anderson, J. G. 2012. Bactericidal effect of corona discharges in atmospheric air. IEEE Transactions on Plasma Science. Vol. 40-10, pp 2322–2333. [CrossRef] [Google Scholar]
  36. Bailey, W. Mitchell, P. and Daniel, J. K. 1994. Effect of Negative Air Ionization on Airborne Transmission of Newcastle Disease Virus. Avian Diseases. Vol. 38, pp 725– 732. [CrossRef] [PubMed] [Google Scholar]
  37. Hagbom, M., Nordgren, J., Nybom, R., Hedlund, K., Wigzell, H. and Svensson, L. 2015. Ionizing air effects influenza virus infectivity and prevents airborne transmission. Scientific Reports. Vol.5. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.