Open Access
E3S Web Conf.
Volume 347, 2022
2nd International Conference on Civil and Environmental Engineering (ICCEE 2022)
Article Number 03017
Number of page(s) 11
Section Earthquake and Geotechnical Engineering
Published online 14 April 2022
  1. B. Maddison. Scour failure of bridges. Proceedings of the Institution of Civil Engineers- Forensic Engineering, 165(1), 39–52 (2012). [CrossRef] [Google Scholar]
  2. L. J. Prendergast, D. Hester, K. Gavin, &J. J. O’sullivan. An investigation of the changes in the natural frequency of a pile affected by scour. Journal of Sound and Vibration, 332(25), 6685–6702 (2013). [CrossRef] [Google Scholar]
  3. L. E. S. Hamill. Bridge Hydraulics. CRC Press (2019). [Google Scholar]
  4. D. S. Mueller, C. R.Wagner. Field observations and evaluations of streambed scour at bridges. McLean, VA, USA: Fed. Highway Admin., U.S. Depart. of Trans., (2005). [Google Scholar]
  5. A. J. Couldrey, T. Benson, M. A. F. Knaapen, K. V. Marten, R. J. S. Whitehous. Morphological evolution of a barchan dune migrating past an offshore wind farm foundation. Earth Surf. Processes Landforms, 45(12), 2884–96 (2020). [CrossRef] [Google Scholar]
  6. L. C. Bolduc, P. Gardoni, J. -L. BriaudX. Probability of exceedance estimates for scour depth around bridge piers. J. Geotech. Geoenviron. Eng., 134(2), 175–184 (2020). [Google Scholar]
  7. L. C. Reese, S. T. Wang, J. H. Long. Scour from cyclic lateral loading of piles. In Offshore Technology Conference, 1–4 May 1989, Houston, Texas (1989). [Google Scholar]
  8. C. R. Bennett, C. Lin, R. Parsons, J. Han. Evaluation of behavior of a laterally loaded bridge pile group under scour conditions. Structures Congress, 2009, 290–299 (2009) [Google Scholar]
  9. Y. N. Kishore, S. N. Rao, J. S. Mani. The behavior of laterally loaded piles subjected to scour in marine environment. KSCE Journal of Civil Engineering, 13, 403–408 (2009). [CrossRef] [Google Scholar]
  10. Y. Mostafa. Effect of local and global scour on lateral response of single piles in different soil conditions. Engineering, 4(6), 297–306 (2012). [CrossRef] [Google Scholar]
  11. L. Wang, C. Liu, L. Wang. A simplified method for assessing the dynamic behaviour of a pile in layered saturated soils that considers current scour. Computers and Geotechnics, 128, 103831 (2020) [CrossRef] [Google Scholar]
  12. W. L. Yang, Q. Li. A new added mass method for fluid-structure interaction analysis of deep-water bridge. KSCE Journal of Civil Engineering, 17 (6), 1413–1424 (2013). [CrossRef] [Google Scholar]
  13. H. M. Westergaard. Water pressures on dams during earthquake. Trans. Am. Soc. Civ. Eng., 98, 418 (1933). [CrossRef] [Google Scholar]
  14. L. Jacobsen. Impulsive Hydrodynamics of a Partially Filled Cylindrical Tank as Well as of a Cylinder Surrounded by a Finite Depth of Fluid. In Geo. Soci. of America Bull. 60(12), 1955 (1949). [Google Scholar]
  15. T. E. Stelson, F. T. Mavis. Virtual mass and acceleration in fluids, Trans. Am. Soc. Civ. Eng., 122, 518 (1957). [CrossRef] [Google Scholar]
  16. R. W. Clough. Effects of earthquakes on underwater structures, in Proc. of 2nd World Conf. of Eart. Eng., 11, 815–831, (1960). [Google Scholar]
  17. H. Goto, K. Toki. Vibration characteristics and aseismic design of submerged bridge piers. in Proc. 3rd world conf. on Eart. Eng. New Zealand, 2, 107–12, (1965). [Google Scholar]
  18. X. Du, P. Wang, M. Zhao. Simplified formula of hydrodynamic pressure on circular bridge piers in the time domain. Ocean Eng., 85, 44–53, (2014). [CrossRef] [Google Scholar]
  19. P. Wang, M. Zhao, X. Du. Analytical solution and simplified formula for earthquake induced hydrodynamic pressure on elliptical hollow cylinders in water. Ocean Eng., 148, 149–160 (2018) [CrossRef] [Google Scholar]
  20. C. Zhang, C. Wu, P. Wang. Seismic fragility analysis of bridge group pile foundations considering fluid-pile-soil Interaction. Shock and Vibration, 2020, 1–17 (2020) [Google Scholar]
  21. Pacific Earthquake Engineering Research Center (PEER). PEER Ground Motion Database Web Application. Pacific Earthquake Engineering Research Center (2021). [Google Scholar]
  22. J. S. Chiou, W. Y. Hung, Y. T. Lee, Z. H. Young. Combined dynamic structure-pile-soil interaction analysis considering inertial and kinematic effects. Computers and Geotechnics, 125, 103671 (2020) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.