Open Access
E3S Web Conf.
Volume 350, 2022
International Conference on Environment, Renewable Energy and Green Chemical Engineering (EREGCE 2022)
Article Number 01021
Number of page(s) 25
Section Green Chemical Engineering
Published online 09 May 2022
  1. International Energy Agency. (2020) Key World Energy Statistics 2020. [Google Scholar]
  2. Tilman, D., Fargione, J., Wolff, B., D’antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W.H., Simberloff, D., Swackhamer, D. (2001) Forecasting agriculturally driven global environmental change. Sci, 292: 281-284. [CrossRef] [PubMed] [Google Scholar]
  3. Vitousek, P.M., Mooney, H.A., Lubchenco, J., Melillo, J.M. (1997) Human domination of Earth’s ecosystems. Sci, 277: 494-499. [CrossRef] [Google Scholar]
  4. Ravishankara, A., Daniel, J.S., Portmann, R.W. (2009) Nitrous oxide (N2O): the dominant ozonedepleting substance emitted in the 21st century. Sci, 326: 123-125. [CrossRef] [PubMed] [Google Scholar]
  5. Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F.S., Lambin, E.F., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H.J. (2009) A safe operating space for humanity. Nature, 461: 472-475. [CrossRef] [PubMed] [Google Scholar]
  6. Rissman, J., Bataille, C., Masanet, E., Aden, N., Morrow, W.R., Zhou, N., Elliott, N., Dell, R., Heeren, N., Huckestein, B., Cresko, J., Miller, S.A., Roy, J., Fennell, P., Cremmins, B., Koch Blank, T., Hone, D., Williams, E.D., Sisson, B., Williams, M., Katzenberger, J., Burtraw, D., Sethi, G., Ping, H., Danielson, D., Lu, H., Lorber, T., Dinkel, J., Helseth, J. (2020) Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. ApEn, 266: 114848-114882. [Google Scholar]
  7. Kakoulaki, G., Kougias, I., Taylor, N., Dolci, F., Moya, J., Jäger-Waldau, A. (2021) Green hydrogen in Europe – A regional assessment: Substituting existing production with electrolysis powered by renewables. Energy Convers. Manage., 228-247: 113649. [CrossRef] [Google Scholar]
  8. International Energy Agency. (2019) The Future of Hydrogen. [Google Scholar]
  9. International Renewable Energy Agency. (2019) Hydrogen: A renewable energy perspective. [Google Scholar]
  10. Fuel Cells and Hydrogen 2 Joint Undertaking. (2019) Hydrogen roadmap europe: a sustainable pathway for the european energy transition. [Google Scholar]
  11. Imprimerie de Montligeon. (2005) From Hydrogen to Energy Production. [Google Scholar]
  12. Michael, P.R. (2004) The Hydrogen Economy: Opportunities, Costs, Barriers, and R&D Needs. The National Academies Press, Washington D.C. [Google Scholar]
  13. European Commission. (2020) Hydrogen generation in Europe: Overview of costs and key benefits. [Google Scholar]
  14. Fasihi, M., Breyer, C. (2020) Baseload electricity and hydrogen supply based on hybrid PV-wind power plants. J. Clean. Prod., 243: 118466-118497. [CrossRef] [Google Scholar]
  15. Le Duigou, A., Miguet, M., Amalric, Y. (2011) French hydrogen markets in 2008 – Overview and future prospects. IJHE, 36: 8822-8830. [Google Scholar]
  16. Fuel Cell and Hydrogen Observatory. (2021) Hydrogen Supply Capacity. [Google Scholar]
  17. Fuel Cell & Hydrogen Energy Association. (2020) Clean Hydrogen Monitor 2020. [Google Scholar]
  18. France Hydrogen Association. (2018) Rapport d’activités de France Hydrogène, édition 2021. [Google Scholar]
  19. United Nations Framework Convention on Climate Change. (2015) The Paris Agreement. [Google Scholar]
  20. Minstry for the Ecological and Solidary Transition. (2021) Long-term low-emission development strategies for France: The ecological and inclusive transition towards carbon neutrality. [Google Scholar]
  21. Yang, Q., Zhou, H., Bartocci, P., Fantozzi, F., Mašek, O., Agblevor, F.A., Wei, Z., Yang, H., Chen, H., Lu, X., Chen, G., Zheng, C., Nielsen, C.P., Mcelroy, M.B. (2021) Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nature Communications, 12: 1698-1710. [CrossRef] [PubMed] [Google Scholar]
  22. Antonini, C., Treyer, K., Streb, A., Van Der Spek, M., Bauer, C., Mazzotti, M. (2020) Hydrogen production from natural gas and biomethane with carbon capture and storage – A technoenvironmental analysis. Sustainable Energy Fuels, 4: 2967-2986. [CrossRef] [Google Scholar]
  23. Conseil général de l’environnement et du développement durable. (2018) Plan de deploiement de l’hydrogene pour la transition energetique. [Google Scholar]
  24. Ministère de l’Écologie, du Développement Durable et de l’Énergie. (2020) National energy and climate plans for France. [Google Scholar]
  25. Ministère de la Transition écologique. (2020) French strategy for energy and climate-multi annual energy plan. [Google Scholar]
  26. Ministère de la Transition écologique. (2021) Assemblée nationale. 17 février 2021 relative à l’hydrogène. [Google Scholar]
  27. EU Commission. (2019) Hydrogen for climate action: Zero Emission Urban Delivery @ Rainbow Unhycorn. [Google Scholar]
  28. EU Commission. (2020) Hydrogen: for climate Action project group. [Google Scholar]
  29. EU Commission. (2017) Hydrogen Law and removal of legal barriers to the deployment of fuel cells and hydrogen applications. [Google Scholar]
  30. Mission Innovation Initiative. (2015) IC8-renewable and clean hydrogen. [Google Scholar]
  31. Hydrogen Fuel News Inc. (2018) France to demonstrate the production of hydrogen from biomass. [Google Scholar]
  32. Fuel Cell Works Inc. (2021) In France, the VHyGO Project (GrandOuest Hydrogen Valley) will Develop Green Hydrogen in Three Different Regions. [Google Scholar]
  33. Meerman, J.C., Hamborg, E.S., Van Keulen, T., Ramírez, A., Turkenburg, W.C., Faaij, A.P.C. (2012) Techno-economic assessment of CO2 capture at steam methane reforming facilities using commercially available technology. Int. J. Greenh. Gas Control., 9: 160-171. [CrossRef] [Google Scholar]
  34. Lhyfe Inc. (2020) Lhyfe: Producteur et fournisseur d’hydrogène renouvelable. [Google Scholar]
  35. OffshoreWIND biz Inc. (2021) World’s First Offshore Green Hydrogen Plant to Go Online in France. [Google Scholar]
  36. AirLiquide Inc. (2021) Air Liquide makes a strategic investment to support large scale renewable hydrogen production in France. [Google Scholar]
  37. Fuel Cell and Hydrogen Joint Undertaking. (2021) Fuel Cell and Hydrogen Joint Undertaking projects. [Google Scholar]
  38. International Energy Agency. (1999) Case studies of integrated hydrogen systems Task 11 Integrated Systems. [Google Scholar]
  39. EU Commission. (2021) Water electrolysis: a promising remedy for the off grid solar energy torage problem. [Google Scholar]
  40. Valente, A., Iribarren, D., Dufour, J. (2017) Harmonised life-cycle global warming impact of renewable hydrogen. J. Clean. Prod., 149: 762-772. [CrossRef] [Google Scholar]
  41. Valente, A., Iribarren, D., Dufour, J. (2018) Harmonising the cumulative energy demand of renewable hydrogen for robust comparative lifecycle studies. J. Clean. Prod., 175: 384-393. [CrossRef] [Google Scholar]
  42. Koroneos, C., Dompros, A., Roumbas, G., Moussiopoulos, N. (2004) Life cycle assessment of hydrogen fuel production process. IJHE, 29: 14431450. [Google Scholar]
  43. Valente, A., Iribarren, D., Candelaresi, D., Spazzafumo, G., Dufour, J. (2020) Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. IJHE, 45: 25758-25765. [Google Scholar]
  44. Valente, A., Iribarren, D., Dufour, J. (2021) Harmonised life-cycle indicators of nuclear-based hydrogen. IJHE, 46: 29724-29731. [Google Scholar]
  45. Valente, A., Iribarren, D., Dufour, J. (2019) How do methodological choices affect the carbon footprint of microalgal biodieselA harmonised life cycle assessment. J. Clean. Prod., 207: 560-568. [CrossRef] [Google Scholar]
  46. TotalEnergies Inc. (2021) Total and Engie partner to develop France’s largest site for the production of green hydrogen from 100% renewable electricity. [Google Scholar]
  47. Solar Media Inc. (2021) Engie, Neoen building subsidy-free 1GW solar project with storage, electrolyser in France. [Google Scholar]
  48. Cetinkaya, E., Dincer, I., Naterer, G.F. (2012) Life cycle assessment of various hydrogen production methods. IJHE, 37: 2071-2080. [Google Scholar]
  49. Bhandari, R., Trudewind, C.A., Zapp, P. (2014) Life cycle assessment of hydrogen production via electrolysis–a review. J. Clean. Prod., 85: 151-163. [CrossRef] [Google Scholar]
  50. Dincer, I., Acar, C. (2015) Review and evaluation of hydrogen production methods for better sustainability. IJHE, 40: 11094-11111. [Google Scholar]
  51. Parra, D., Zhang, X., Bauer, C., Patel, M.K. (2017) An integrated techno-economic and life cycle environmental assessment of power-to-gas systems. ApEn, 193: 440-454. [Google Scholar]
  52. Al-Qahtani, A., Parkinson, B., Hellgardt, K., Shah, N., Guillen-Gosalbez, G. (2021) Uncovering the true cost of hydrogen production routes using life cycle monetisation. ApEn, 281: 115958-115970. [Google Scholar]
  53. Zhang, X., Bauer, C., Mutel, C.L., Volkart, K. (2017) Life Cycle Assessment of Power-to-Gas: Approaches, system variations and their environmental implications. ApEn, 190: 326-338. [Google Scholar]
  54. Salkuyeh, Y.K., Saville, B.A., Maclean, H.L. (2018) Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes. IJHE, 43: 9514-9528. [Google Scholar]
  55. Khojasteh Salkuyeh, Y., Saville, B.A., Maclean, H.L. (2017) Techno-economic analysis and life cycle assessment of hydrogen production from natural gas using current and emerging technologies. IJHE, 42: 18894-18909. [Google Scholar]
  56. Eggemann, L., Escobar, N., Peters, R., Burauel, P., Stolten, D. (2020) Life cycle assessment of a smallscale methanol production system: A Power-to-Fuel strategy for biogas plants. J. Clean. Prod., 271: 122476-122488. [CrossRef] [Google Scholar]
  57. Lee, B., Heo, J., Choi, N.H., Moon, C., Moon, S., Lim, H. (2017) Economic evaluation with uncertainty analysis using a Monte-Carlo simulation method for hydrogen production from high pressure PEM water electrolysis in Korea. IJHE, 42: 2461224619. [Google Scholar]
  58. Lee, B., Lee, H., Heo, J., Moon, C., Moon, S., Lim, H. (2019) Stochastic techno-economic analysis of H2 production from power-to-gas using a highpressure PEM water electrolyzer for a small-scale H2 fueling station. Sustainable Energy Fuels, 3: 2521-2529. [CrossRef] [Google Scholar]
  59. Heng, L., Xiao, R., Zhang, H. (2018) Life cycle assessment of hydrogen production via iron-based chemical-looping process using non-aqueous phase bio-oil as fuel. Int. J. Greenh. Gas Control., 76: 7884. [CrossRef] [Google Scholar]
  60. Khzouz, M., Gkanas, E.I., Shao, J., Sher, F., Beherskyi, D., El-Kharouf, A., Al Qubeissi, M. (2020) Life Cycle Costing Analysis: Tools and Applications for Determining Hydrogen Production Cost for Fuel Cell Vehicle Technology. Energies, 13: 3783-3802. [CrossRef] [Google Scholar]
  61. Tőke, P.M., Hortay, O. (2021) Simulation-based sensitivity analysis of an on-site hydrogen production unit in Hungary. IJHE, 46: 4881-4889. [Google Scholar]
  62. Zhang, C., Xu, Y. (2020) Economic analysis of large-scale farm biogas power generation system considering environmental benefits based on LCA: A case study in China. J. Clean. Prod., 258: 120985120995. [Google Scholar]
  63. Zhang, Y., Wang, L., Wang, N., Duan, L., Zong, Y., You, S., Maréchal, F., Van Herle, J., Yang, Y. (2019) Balancing wind-power fluctuation via onsite storage under uncertainty: Power-to-hydrogen-to-power versus lithium battery. Renew. Sust. Energ. Rev., 116: 109465-109479. [CrossRef] [Google Scholar]
  64. Lee, B., Heo, J., Kim, S., Kim, C.H., Ryi, S.K., Lim, H. (2019) Integrated techno-economic analysis under uncertainty of glycerol steam reforming for H2 production at distributed H2 refueling stations. Energy Convers. Manage., 180: 250-257. [CrossRef] [Google Scholar]
  65. Zhao, G., Kraglund, M.R., Frandsen, H.L., Wulff, A.C., Jensen, S.H., Chen, M., Graves, C.R. (2020) Life cycle assessment of H2O electrolysis technologies. IJHE, 45: 23765-23781. [Google Scholar]
  66. Reiter, G., Lindorfer, J. (2015) Global warming potential of hydrogen and methane production from renewable electricity via power-to-gas technology. Int J LCA, 20: 477-489. [CrossRef] [Google Scholar]
  67. Chen, J., Xu, W., Zuo, H., Wu, X., E, J., Wang, T., Zhang, F., Lu, N. (2019) System development and environmental performance analysis of a solardriven supercritical water gasification pilot plant for hydrogen production using life cycle assessment approach. Energy Convers. Manage., 184-198: 60-73. [CrossRef] [Google Scholar]
  68. Rajabi Hamedani, S., Villarini, M., Colantoni, A., Moretti, M., Bocci, E. (2018) Life Cycle Performance of Hydrogen Production via AgroIndustrial Residue Gasification—A Small Scale Power Plant Study. Energies, 11: 675-694. [CrossRef] [Google Scholar]
  69. Sarkar, O., Katakojwala, R., Mohan, S.V. (2021) Low carbon hydrogen production from a wastebased biorefinery system and environmental sustainability assessment. Green Chem., 23: 561574. [CrossRef] [Google Scholar]
  70. Tugnoli, A., Landucci, G., Cozzani, V. (2008) Sustainability assessment of hydrogen production by steam reforming. IJHE, 33: 4345-4357. [Google Scholar]
  71. Xu, D., Li, W., Ren, X., Shen, W., Dong, L. (2020) Technology selection for sustainable hydrogen production: A multi-criteria assessment framework under uncertainties based on the combined weights and interval best-worst projection method. IJHE, 45: 34396-34411. [Google Scholar]
  72. Boyano, A., Blanco-Marigorta, A.M., Morosuk, T., Tsatsaronis, G. (2011) Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy, 36: 2202-2214. [CrossRef] [Google Scholar]
  73. Yadav, D., Banerjee, R. (2020) Net energy and carbon footprint analysis of solar hydrogen production from the high-temperature electrolysis process. ApEn, 262: 114503-114518. [Google Scholar]
  74. International Organization for Standardization. (2006) Environmental management—Life cycle assessment—Principles and framework. [Google Scholar]
  75. International Organization for Standardization. (2006) Environmental management — Life cycle assessment — Requirements and guidelines. [Google Scholar]
  76. Pérez-López, P., Gschwind, B., Blanc, P., Frischknecht, R., Stolz, P., Durand, Y., Heath, G.A., Ménard, L., Blanc, I. (2017) ENVi PV: an interactive Web Client for multi criteria life cycle assessment of photovoltaic systems worldwide. Prog Photovolt, 25: 484-498. [CrossRef] [Google Scholar]
  77. Deloitte Touche Tohmatsu Inc. (2021) Fueling the future of mobility: hydrogen electrolyzers. [Google Scholar]
  78. International Energy Agency. (2020) Life Cycle Inventories and Life Cycle Assessments of Photovoltaic Systems. [Google Scholar]
  79. Agence de la Transition Ecologique. (2017) Solar photovoltaic: STRATEGIC ROADMAP. df. [Google Scholar]
  80. Global Market Insights Inc. (2020) Solar PV Module Market Size By Technology: Industry Analysis Report, Regional Outlook, Price Trends, Competitive Market Share & Forecast, 2020 – 2026. [Google Scholar]
  81. Besseau, R. (2019) Analyse de cycle de vie de scénarios énergétiques intégrant la contrainte d’adéquation temporelle production consommation. [Google Scholar]
  82. International Energy Agency. (2019) Methodology Guidelines on Life Cycle Assessment of Photovoltaic 2020. [Google Scholar]
  83. Doubleday, K., Choi, B., Maksimovic, D., Deline, C., Olalla, C. (2016) Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters. SoEn, 135: 512-517. [Google Scholar]
  84. Paul, B. (2016) Photovoltaics in positive energy buildings. [Google Scholar]
  85. Celik, I., Lunardi, M., Frederickson, A., Corkish, R. (2020) Sustainable End of Life Management of Crystalline Silicon and Thin Film Solar Photovoltaic Waste: The Impact of Transportation. J Appl Sci (Faisalabad), 10: 5465-5478. [Google Scholar]
  86. Le Centre Observation, Impacts, Energie. (2021) CAMS radiation service dataset “AGATE” over Europe computed with McClear version 3 and CAMS radiation bias correction. [Google Scholar]
  87. Energypedia consult. (2017) Standard test conditions., 5)%20spe ctrum. [Google Scholar]
  88. SMA Solar Technology Inc. (2021) Performance ratio SMA Solar Technology AG. [Google Scholar]
  89. Perez-Lopez, P., Gschwind, B., Frischknecht, R., Stolz, P., Mehl, C., Payeur, M., Heath, G., Blanc, I. (2019) Combining region-specific supply chains with geo-located PV electricity production for Life Cycle Assessment of worldwide crystalline silicon photovoltaic systems in ENVI-PV 2.0. In: 36th European Photovoltaic Solar Energy Conference and Exhibition. Marseille. pp. 1-7. [Google Scholar]
  90. Jordan, D.C., Kurtz, S.R., Vansant, K., Newmiller, J. (2016) Compendium of photovoltaic degradation rates. Prog. Photovoltaics Res. Appl., 24: 978-989. [CrossRef] [Google Scholar]
  91. France Energie Eolienne Inc. (2019) WIND OBSERVATORY: Analysis of the French wind power industry: market, jobs and challenges. [Google Scholar]
  92. France Energie Eolienne Inc. (2020) Wind Observatory 2020 Analysis of the French wind power industry: market, jobs and challenges. [Google Scholar]
  93. WindEurope Inc. (2021) Offshore Wind in Europe: Key trends and statistics 2020. [Google Scholar]
  94. Renewables Now Inc. (2020) Renewables share in power consumption hits 23% in France in 2019. [Google Scholar]
  95. The Wind Power Inc. (2021) France wind farms database. [Google Scholar]
  96. STATISTA Inc. (2020) Share of the average plant load factor (PLF) of wind electricity in France in 2019, by region. [Google Scholar]
  97. WindEurope Inc. (2020) Wind energy in Europe in 2019. [Google Scholar]
  98. International Energy Agency. (2019) Offshore Wind Outlook 2019. [Google Scholar]
  99. Bareiß, K., De La Rua, C., Möckl, M., Hamacher, T. (2019) Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. ApEn, 237: 862-872. [Google Scholar]
  100. H2 Energy S.r.l. (2021) Alkaline Water Electrolysis PEM H2 Energy. [Google Scholar]
  101. National Renewable Energy Laboratory. (2010) Current (2009) State-of-the-Art Hydrogen Production Cost Estimate Using Water Electrolysis: Independent Review. [Google Scholar]
  102. Guo, Y., Li, G., Zhou, J., Liu, Y. (2019) Comparison between hydrogen production by alkaline water electrolysis and hydrogen production by PEM electrolysis. IOP Conf, 371-376: 042022. [Google Scholar]
  103. Agence de la Transition Ecologique. (2020) Rendement de la chaîne hydrogène. [Google Scholar]
  104. Makridis, S. (2017) Hydrogen storage and compression. ET Digital Library, Kozani. [Google Scholar]
  105. Paul Scherrer Institute. (2021) Coupling Integrated Assessment Models Output with Life Cycle Assessment. [Google Scholar]
  106. PDC Machines Inc. (2013) Introduction to Diaphragm Compressors. [Google Scholar]
  107. Paul Scherrer Institute. (2021) Brightway2 LCA framework. [Google Scholar]
  108. Le Centre Observation, Impacts, Energie. (2021) Layer over brightway2 for algebraic definition of parametric models and super fast computation of LCA. [Google Scholar]
  109. Publications Office of the European Union. (2018) Supporting information to the characterisation factors of recommended EF Life Cycle Impact Assessment methods: New methods and differences with ILCD. [Google Scholar]
  110. Sobol, I.M. (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul, 55: 271-280. [CrossRef] [Google Scholar]
  111. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S. (2008) Global sensitivity analysis: the primer. John Wiley & Sons, England. [Google Scholar]
  112. Wilfried, V.S., Nils, R., Björn, M., Alfons, A., Klaus, K., Christian, R. (2012) Review of PV performance ratio development. In: World Renewable Energy Forum. Colorado. pp. 1-6. [Google Scholar]
  113. EU Commission. (2021) Glossary: Nomenclature of territorial units for statistics (NUTS). [Google Scholar]
  114. Ecoinvent Inc. (2019) Ecoinvent v3.6 cut-off: Fuel cell production, stack solid oxide, 125kW, electrical, future. [Google Scholar]
  115. Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., Weidema, B. (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J LCA, 21: 1218–1230. [CrossRef] [Google Scholar]
  116. Schmidt, O., Gambhir, A., Staffell, I., Hawkes, A., Nelson, J., Few, S. (2017) Future cost and performance of water electrolysis: An expert elicitation study. IJHE, 42: 30470-30492. [Google Scholar]
  117. Ma, T., Chen, Y., Pavlenko, A.N., Wang, Q. (2021) Heat and mass transfer advances for energy conservation and pollution control in a renewable and sustainable energy transition. Renew. Sust. Energ. Rev., 145-147: 111087. [Google Scholar]
  118. Ren, J. (2021) China’s Energy Security: analysis, assessment and improvement. World Scientific Publishing, London. [CrossRef] [Google Scholar]
  119. Liu, J., Yin, M., Xia-Hou, Q., Wang, K., Zou, J. (2021) Comparison of sectoral low-carbon transition pathways in China under the nationally determined contribution and 2°C targets. Renew. Sust. Energ. Rev., 149: 111336-111349. [CrossRef] [Google Scholar]
  120. Xu, L., Zhang, S., Yang, M., Li, W., Xu, J. (2017) Environmental effects of China’s solar photovoltaic industry during 2011–2016: A life cycle assessment approach. J. Clean. Prod., 170: 310-329. [Google Scholar]
  121. National Development and Reform Commission of China. (2016) Cleaner Production Evaluation Index System in Photovoltaic Cell Industry. [Google Scholar]
  122. Mishnaevsky, L., Branner, K., Petersen, H.N., Beauson, J., Mcgugan, M., Sørensen, B.F. (2017) Materials for Wind Turbine Blades: An Overview. Materials (Basel), 10: 1285-1309. [CrossRef] [Google Scholar]
  123. Kind, S., Neubauer, S., Becker, J., Yamamoto, M., Völkert, M., Abendroth, G.V., Zelder, O., Wittmann, C. (2014) From zero to hero – Production of biobased nylon from renewable resources using engineered Corynebacterium glutamicum. Metab. Eng., 25: 113-123. [CrossRef] [Google Scholar]
  124. Radzik, P., Leszczyńska, A., Pielichowski, K. (2020) Modern biopolyamide-based materials: synthesis and modification. Polym. Bull., 77: 501-528. [CrossRef] [Google Scholar]
  125. Mahssin, Z.Y., Abdul Hassan, N., Yaacob, H., Puteh, M.H., Ismail, C.R., Putra Jaya, R., Mohammad Zainol, M., Mahmud, M.Z.H. (2021) Converting Biomass into Bio-Asphalt – A Review. IOP Conf, 682: 012066. [Google Scholar]
  126. Ragab, A.A. (2018) Asphalt Modified with Biomaterials as Eco-Friendly and Sustainable Modifiers. IntechOpen, London. [Google Scholar]
  127. Torres, F.G., De-La-Torre, G.E. (2021) Algal-based polysaccharides as polymer electrolytes in modern electrochemical energy conversion and storage systems: A review. Carbohydr. Polym. Technol. Appl., 2: 100023-100040. [Google Scholar]
  128. Scheepers, F., Stähler, M., Stähler, A., Rauls, E., Müller, M., Carmo, M., Lehnert, W. (2021) Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency. ApEn, 283: 116270-116281. [Google Scholar]
  129. Mahmood, N., Yao, Y., Zhang, J., Pan, L., Zhang, X., Zou, J. (2018) Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions. Adv. Sci., 5: 1700464-1700487. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.