Open Access
Issue
E3S Web Conf.
Volume 350, 2022
International Conference on Environment, Renewable Energy and Green Chemical Engineering (EREGCE 2022)
Article Number 03009
Number of page(s) 4
Section Green Chemical Engineering
DOI https://doi.org/10.1051/e3sconf/202235003009
Published online 09 May 2022
  1. M.A. Adebayo, J.I. Adebomi, T.O. Abe, et al. Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloids Surf. A Physicochem. Eng. Asp., 38, 100311 (2020) [Google Scholar]
  2. N. Belachew, G. Bekele, Synergy of Magnetite Intercalated Bentonite for Enhanced Adsorption of Congo Red Dye. Silicon., 12, 603-612 (2019) [Google Scholar]
  3. X.Y. Xu, B. Wang, H. Tang, et al. Removal of phosphate from wastewater by modified bentonite entrapped in Ca-alginate beads. J Environ Manage., 260, 110130 (2020) [CrossRef] [Google Scholar]
  4. R.R. Pawar, P.G. Ingole, et al. Use of activated bentonite-alginate composite beads for efficient removal of toxic Cu2+ and Pb2+ ions from aquatic environment. Int J Biol Macromol., 164, 3145-3154 (2020) [CrossRef] [Google Scholar]
  5. S. Lan, Z.H. Leng, N. Guo, et al. Sesbania gum-based magnetic carbonaceous nanocomposites: Facile fabrication and adsorption behavior. Colloids Surf. A Physicochem. Eng. Asp., 446, 163-171 (2014) [CrossRef] [Google Scholar]
  6. H.B. Zhang, Z.F. Tong, T.Y. Wei, et al Sorption characteristics of Pb(II) on alkaline Ca-bentonite. Appl Clay Sci., 65, 21-23 (2012) [CrossRef] [Google Scholar]
  7. A. Nasrullah, A.H. Bhat, A. Naeem, High surface area mesoporous activated carbon-alginate beads for efficient removal of methylene blue. Int J Biol Macromol., 107, 1792-1799 (2018) [CrossRef] [Google Scholar]
  8. M.A. Adebayo, J.I. Adebomi, T.O. Abe, et al. Removal of aqueous Congo red and malachite green using ackee apple seed–bentonite composite. Colloids Surf. A Physicochem. Eng. Asp., 38, 100311 (2020) [Google Scholar]
  9. W.Y. Li, Q.L. Ma, Y.S. Bai, et al. Facile fabrication of gelatin/bentonite composite beads for tunable removal of anionic and cationic dyes. Chem Eng Res Des., 134, 336-346 (2018) [CrossRef] [Google Scholar]
  10. A. Mokhtar, S. Abdelkrim, A. Sardi, et al. Preparation and Characterization of Anionic Composite Hydrogel for Dyes Adsorption and Filtration: Non-linear Isotherm and Kinetics Modeling. J Polym Environ., 28, 1710-1723 (2020) [CrossRef] [Google Scholar]
  11. X.X. Yang, Y.M. Li, H.M. Gao, et al. One-step fabrication of chitosan-Fe(OH)3 beads for efficient adsorption of anionic dyes. Int J Biol Macromol., 117, 30-41 (2018) [CrossRef] [Google Scholar]
  12. S. Vahidhabanu, D. Karuppasamy, A.I. Adeogun, et al. Impregnation of zinc oxide modified clay over alginate beads: a novel material for the effective removal of congo red from wastewater. RSC Advances, 7: 5669-5678 (2017) [CrossRef] [Google Scholar]
  13. A. Oussalah, A. Boukerroui, A. Aichour, et al. Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: Adsorption and reusability studies. Int J Biol Macromol, 124, 854-862 (2019) [CrossRef] [PubMed] [Google Scholar]
  14. Y.M. Zhao, L.X. Gai, H. Liu, et al. Network interior and surface engineering of alginate-based beads using sorption affinity component for enhanced phosphate capture. Int J Biol Macromol, 162, 301-309 (2020) [CrossRef] [PubMed] [Google Scholar]
  15. B.G. Li, H.Y. Yin, Excellent biosorption performance of novel alginate-based hydrogel beads crosslinked by lanthanum(III) for anionic azo-dyes from water. J Disper Sci Technol., 42, 1830-1842 (2020) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.