Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01046
Number of page(s) 6
DOI https://doi.org/10.1051/e3sconf/202235101046
Published online 24 May 2022
  1. Roelofs, R., Fridovich-Keil, S., Miller, J., Shankar, V., Hardt, M., Recht, B., & Schmidt, L. A metaanalysis of overfitting in machine learning. In Proceedings of the 33rd International Conference on Neural Information Processing Systems (pp. 9179–9189). (2019, December). [Google Scholar]
  2. Yassine, A., Mohamed, C., & Zinedine, A.. Feature selection based on pairwise evalution. In 2017 Intelligent Systems and Computer Vision (ISCV) (pp. 1–6). IEEE. (2017, April) [Google Scholar]
  3. Akhiat, Y., Asnaoui, Y., Chahhou, M., & Zinedine, A. A new graph feature selection approach. In 2020 6th IEEE Congress on Information Science and Technology (CiSt) (pp. 156–161). IEEE. (2021, June). [Google Scholar]
  4. Akhiat, Y., Chahhou, M., & Zinedine, A. Feature selection based on graph representation. In 2018 IEEE 5th International Congress on Information Science and Technology (CiSt) (pp. 232–237). IEEE. (2018, October). [CrossRef] [Google Scholar]
  5. Akhiat, Y., Chahhou, M., & Zinedine, A. Ensemble feature selection algorithm. International Journal of Intelligent Systems and Applications, 11(1), 24. (2019). [CrossRef] [Google Scholar]
  6. Akhiat, Y., Manzali, Y., Chahhou, M., & Zinedine, A. A New Noisy Random Forest Based Method for Feature Selection. Cybernetics and Information Technologies, 21(2), 10–28. (2021). [CrossRef] [Google Scholar]
  7. Cox, M. A., & Cox, T. F. Multidimensional scaling. In Handbook of data visualization (pp. 315–347). Springer, Berlin, Heidelberg. (2008). [CrossRef] [Google Scholar]
  8. Tenenbaum, J. B., De Silva, V., & Langford, J. C. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. (2000). [CrossRef] [PubMed] [Google Scholar]
  9. Roweis, S. T., & Saul, L. K. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326. (2000). [CrossRef] [PubMed] [Google Scholar]
  10. Barshan, E., Ghodsi, A., Azimifar, Z., & Jahromi, M. Z. Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds. Pattern Recognition, 44(7), 1357–1371. (2011). [CrossRef] [Google Scholar]
  11. Quinlan, J. R. Induction of decision trees. Machine learning. (1986). [Google Scholar]
  12. Kononenko, I. Estimating attributes: Analysis and extensions of RELIEF. In European conference on machine learning (pp. 171–182). Springer, Berlin, Heidelberg. (1994, April). [Google Scholar]
  13. Yu, L., & Liu, H. Efficient feature selection via analysis of relevance and redundancy. The Journal of Machine Learning Research, 5, 1205–1224, (2004). [Google Scholar]
  14. Kohavi, R., & John, G. H. Wrappers for feature subset selection. Artificial intelligence, 97(1-2), 273–324. (1997). [CrossRef] [Google Scholar]
  15. Guyon, I., Weston, J., Barnhill, S., & Vapnik, V. Gene selection for cancer classification using support vector machines. Machine learning, 46(1), 389–422. (2002). [CrossRef] [Google Scholar]
  16. Raman, B., & Ioerger, T. R. Instance-based filter for feature selection. Journal of Machine Learning Research, 1(3), 1–23. (2002). [Google Scholar]
  17. Tang, J., Alelyani, S., & Liu, H. Feature selection for classification: A review. Data classification: Algorithms and applications, 37. (2014). [Google Scholar]
  18. Venkatesh, B., & Anuradha, J. (2019). A review of feature selection and its methods. Cybernetics and Information Technologies, 19(1), 3–26. [CrossRef] [Google Scholar]
  19. Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. (1996). [CrossRef] [Google Scholar]
  20. Fonti, V., & Belitser, E. Feature selection using lasso. VU Amsterdam Research Paper in Business Analytics, 30, 1–25, (2017). [Google Scholar]
  21. Lichman, M. UCI Machine Learning Repository http://archive.ics.uci.edu/ml. UCI Machine Learning Repository, 2013. (2013). [Google Scholar]
  22. Battiti, R. Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on neural networks, 5(4), 537–550. (1994). [CrossRef] [PubMed] [Google Scholar]
  23. Guyon, I., & Elisseeff, A. An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157–1182. (2003). [Google Scholar]
  24. Robnik-Sikonja, M., & Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning, 53(1), 23–69. (2003). [CrossRef] [Google Scholar]
  25. Akhiat, Y., Manzali, Y., Chahhou, M., & Zinedine, A. A New Noisy Random Forest Based Method for Feature Selection. Cybernetics and Information Technologies, 21(2), 10–28. (2021). [CrossRef] [Google Scholar]
  26. Asnaoui, Y., Akhiat, Y., & Zinedine, A. Feature selection based on attributes clustering. In 2021 Fifth International Conference On Intelligent Computing in Data Sciences (ICDS) (pp. 1–5). IEEE. (2021, October). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.