Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01079
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101079
Published online 24 May 2022
  1. G. Matthaei, L. Young, Gand, M.T. Jones, “Microwave filters, impedance-matching networks, And coupling structures”, pp. 320–334, McGraw-Hill, New York,1964. [Google Scholar]
  2. P.A. Rizzi “Microwave engineering passive circuits”, pp. 306–317 pp 454–489, Prentice-Hall, Inc. 1988. [Google Scholar]
  3. A. Mediavilla, A. Tazon, J.A. Pereda, M. Lazaro, I. Santamaria, C. Pantaleon, “Neuronal Architecture for Waveguide Inductive Iris Bandpass Filter Optimization,” ijcnn, p. 4395, IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN'00)-Volume 4, 2000. [Google Scholar]
  4. Teberio, F., Arregui, I., Guglielmi, M., Gomez-Torrent, A., Soto, P., Laso, M.A.G., & Boria, V.E. (2016). Compact broadband waveguide diplexer for satellite applications. IEEE MTT-S International Microwave Symposium Digest, 2016-Augus(1), 2 [Google Scholar]
  5. https://doi.org/10.1109/MWSYM.2016.7540231 [Google Scholar]
  6. D.L. Boyenga, «Contribution à la nouvelle formulation variationnelle : Application aux études des discontinuités et des filtres en guides d'ondes métalliques”, thèse de doctorat INP Toulouse, Nov. 2005. [Google Scholar]
  7. Nosrati, M., & Daneshmand, M. (2018). GapCoupled Excitation for Evanescent-Mode Substrate Integrated Waveguide Filters. IEEE Transactions on Microwave Theory and Techniques, 66(6). https://doi.org/10.1109/TMTT.2018.2818155 [Google Scholar]
  8. Mohottige, N., Budimir, D., Golubicic, Z., & Potrebic, M. (2011). Electromagnetic modelling of dielectric-filled waveguide filters for diplexer applications. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 873–875. https://doi.org/10.1109/APS.2011.5996414 [Google Scholar]
  9. J. Uher, J. Bohrnemann, and U. Rosenberg, Waveguide components for antenna feed systems: Theory and CAD, Chapter 3, Boston, Artech. House, 1993. [Google Scholar]
  10. Mohammadi, E., & Ghorbaninejad, H. (2017). Novel resonant structure to compact partial H-plane band-pass waveguide filter. International Journal of Electrical and Computer Engineering, 7(1), 266–270. https://doi.org/10.11591/ijece.v7i1.pp266-270 [Google Scholar]
  11. R. Levy, “Derivation of equivalent circuits of microwave structures using numerical techniques,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 1688–1695, Sept. 1999. [CrossRef] [Google Scholar]
  12. Li, P., Chu, H., & Chen, R.S. (2017). Design of compact bandpass filters using quarter-mode and eighth-mode SIW cavities. IEEE Transactions on Components, Packaging and Manufacturing Technology, 7(6). https://doi.org/10.1109/TCPMT.2017.2677958 [Google Scholar]
  13. J. Bornemann, “Comparison between different formulations of the transverse resonance fieldmatching technique for the three-dimensional analysis of metal finned waveguide resonators,” in J. Numerical Modeling., vol.4, pp. 63–73, March 1991. [CrossRef] [Google Scholar]
  14. Fu, Y., Yang, B., & Miao, J. (2013). Exact Design of A Ka Band H-plane Inductance Diaphragm Waveguide Band-pass Filter. 1618–1621. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.293 [Google Scholar]
  15. V.E. Boria and B. Gimeno, ‘Waveguide filters for satellite’, IEEE Microwave Magazine, vol. 8, pp. 60–70, Oct. 2007. [CrossRef] [Google Scholar]
  16. Chu, H., Li, P., & Chen, J.X. (2015). Balanced substrate integrated waveguide bandpass filter with high selectivity and common-mode suppression. IET Microwaves, Antennas and Propagation, 9(2). https://doi.org/10.1049/iet-map.2013.0708 [Google Scholar]
  17. G. Bianchi. Electronic Filter Simulation & Design. McGraw-Hill Professional, 1 edition, 2007, n.d. [Google Scholar]
  18. L. Li, Z. Wu, K. Yang, X. Lai, and Z. Lei, “A Novel Miniature Single-Layer Eighth-Mode SIW Filter with Improved Out-of-Band Rejection,” IEEE Microw. Wirel. Components Lett., vol. 28, no. 5, pp. 407–409, 2018. [CrossRef] [Google Scholar]
  19. R. Levy, R.-V. Snyder, and G. Matthaei, “Design of microwave filters”, IEEE Trans. Microwave Theory and Thech., vol. 50, no.3, pp. 783–793, Mar. 2002. [CrossRef] [Google Scholar]
  20. Pons-Abenza, A., García-Barceló, J.M., Romera-Pérez, A., Alvarez-Melcon, A., Quesada-Pereira, F.D., Hinojosa-Jiménez, J., Guglielmi, M., Boria Esbert, V.E., & Arche-Andradas, L. (2020). Design and implementation of evanescent mode waveguide filters using dielectrics and additive manufacturing techniques. AEU - International Journal of Electronics and Communications, 116(X), 1–9. https://doi.org/10.1016/j.aeue.2020.153065 [CrossRef] [Google Scholar]
  21. Vallerotonda, P., Pelliccia, L., Tomassoni, C., Cacciamani, F., Sorrentino, R., Galdeano, J., & Ernst, C. (2019). Compact waveguide bandpass filters for broadband space applications in c and ku- bands. Proceedings of European Microwave Conference in Central Europe, EuMCE 2019, May, 116–119. [Google Scholar]
  22. Zou, X., Tong, C.M., & Yu, D.W. (2011). Design of an X-band symmetrical window bandpass filter based on substrate integrated waveguide. Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference, CSQRWC 2011, 1, 571–574. https://doi.org/10.1109/CSQRWC.2011.6037014 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.