Open Access
Issue
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
Article Number 01086
Number of page(s) 5
DOI https://doi.org/10.1051/e3sconf/202235101086
Published online 24 May 2022
  1. S. Jung, D. Lee, Y. Yang, and C. Park, “Experimental optimization of the 2nd loop configuration for feedforward amplifiers in terms of their efficiency and linearity,” Microw. Opt. Technol. Lett., vol. 48, no. 3, pp. 617–621, Mar (2006) [CrossRef] [Google Scholar]
  2. S.A. Maas, G. Priblet “A directional coupler with very flat coupling,” IEEE Trans. Microw. Theory Tech, vol. 26, no. 2, 70–74, Feb (1978) [CrossRef] [Google Scholar]
  3. S. Banba, T. Hasegawa, and H. Ogawa, “Multilayer MMIC branch-line hybrid using thin dielectric layers,” IEEE Microw. Guided Wave Lett., vol. 1, no. 11, 346–347, Nov (1991) [CrossRef] [Google Scholar]
  4. M. Muraguchi, T. Yukitake, and Y. Naito, “Optimum design of 3-dB branch-line couplers using microstrip lines,” IEEE Trans. Microw. Theory Tech., vol. 31, no. 8, 674–678, Aug (1983) [CrossRef] [Google Scholar]
  5. C.T. Lin, C.L. Liao, and C.H. Chen, “Finite-ground coplanar waveguide branch-line couplers,” IEEE Trans. Microw. Wireless Compon. Lett., vol. 11, no. 3, 127–129, Mar (2001) [CrossRef] [Google Scholar]
  6. L.H. Weng, Y.C. Guo, X.W. Shi, and X.Q. Chen, “An overview on defected ground structures,” Progress in Electromagnetics Research B, vol. 7, 173–189 (2008) [CrossRef] [Google Scholar]
  7. M. Caulton, B. Hershenov, S.P. Knight, and R.E. Debrecht, “Status of lumped elements in microwave integrated circuit present and future,” IEEE Trans. Microw. Theory Tech., vol. 9, No. 7(1971) [Google Scholar]
  8. S.S. Liao and J.-T. Peng, “Compact planar microstrip branch-line couplers using the quasi- lumped elements approach with nonsymmetrical and symmetrical T-shaped structure,” IEEE Trans. Microw. Theory Tech., vol. 54, pp. 3508–3514, Sep (2006) [CrossRef] [Google Scholar]
  9. O. Kazan, O. Memioglu, F. Kocer, A. Gundel, and C. Toker, “A Lumped-Element Wideband 3-dB Quadrature Hybrid,” in IEEE Microwave and Wireless Components Letters, vol. 29, no. 6, pp. 385–387 (2019) [CrossRef] [Google Scholar]
  10. A. Abdulbari, S. Abdul Rahim, M.Z. Abd Aziz “New design of wideband microstrip branch line coupler using T-shape and open stub for 5G application,” International Journal of Electrical and Computer Engineering (IJECE) vol. 11, no. 2, April, 2021. [Google Scholar]
  11. M. Kumar, S.K.N. Islam, G. Sen, S.K. Parui, and S. Das, “Design of miniaturized 10 dB wideband branch line coupler using dual feed and T-shape transmission lines,” Radio engineering, vol. 27, no. 1, pp. 207–213 (2018) [Google Scholar]
  12. W. Shin Chang and C. Yang Chang, “A high slow- wave factor microstrip structure with simple design formulas and its application to microwave circuit design,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 11, pp. 3376–3383, Nov (2012) [CrossRef] [Google Scholar]
  13. H. Ghali and T.A. Moselhy “Miniaturized fractal ratrace, branch-line, and coupled-line hybrids,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 11, pp. 2513–2520, Nov (2004) [CrossRef] [Google Scholar]
  14. C.W. Tang and M.-C. Chem., “Synthesizing microstrip branch-line coupler with predetermined compact size and bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 55, pp. 1926–1934, Sep (2007) [CrossRef] [Google Scholar]
  15. K. Yu Tsai, H. Shun Yang, J. Horng Chen, and Y. Jan Emery Chen, “A miniaturized 3 dB Branch-Line Hybrid Coupler with Harmonics Suppression,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 537–539, Oct (2011) [CrossRef] [Google Scholar]
  16. C. Wei Wang, T. Ghuang Ma and C. Fa Yang, “A new planar artificial transmission line and its applications to a miniaturized butler matrix,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 12, pp. 2792–2801, Dec (2007) [CrossRef] [Google Scholar]
  17. W.A. Arriola, J.Y. Lee, and I.S. Kim, “Wideband 3 dB branch line coupler based on Z/4 open circuited coupled lines,” in IEEE Microwave and Wireless Components Letters, vol. 21, no. 9, pp. 486–48(2011) [CrossRef] [Google Scholar]
  18. D.N.A. Zaidel, S.K.A. Rahim, N. Seman, C.L. Chew, “A Design of Octagon-Shaped 3-dB Ultra- Wideband Coupler Using Multilayer Technology,” Microwave and Optical Technology Letters, vol. 55, no. 1, pp. 748–753 (2013) [Google Scholar]
  19. B.M. Saad, Sharul K.A. Rahim, “Compact WideBand Branch-Line Coupler with Meander Line, Cross, And Two-Step Stubs,” Microwave and Optical Technology Letters, vol. 55, no (2013) [Google Scholar]
  20. A. Denis Letavin, E. Yuriy Mitelman, A. Victor Chechetkin “A Novel Simple Miniaturization Technique for Double Rat-race coupler» 978-17281-3599-1/19/31.00 IEEE (2020) [Google Scholar]
  21. Denis A. Letavin, Nikolay S. Knyazev “Broadband miniature quadrature coupler on planar cells,” URSI GASS 2020, Rome, Italy, 29 August - 5 September (2020) [Google Scholar]
  22. S.M. Hosseini and A. Rezaei, “Design of A BranchLine Microstrip Coupler Using Spirals and Step Impedance Cells for WIMAX Applications,” Aro- The Scientific Journal of Koya University, vol. 8, no. 1 (2020) [CrossRef] [Google Scholar]
  23. N.M. Jizat, N.M. Isa, J. Sheela Francisca, S.K.A Rahim “3-dB Branch-line Coupler using Coupled Line Radial Stub with No Restriction on Coupling Power” 2015 IEEE 12th (MICC), Kuching, Malaysia Nov (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.