Open Access
Issue
E3S Web Conf.
Volume 352, 2022
7th International Conference on Energy Science and Applied Technology (ESAT 2022)
Article Number 02012
Number of page(s) 6
Section Clean Energy Technologies
DOI https://doi.org/10.1051/e3sconf/202235202012
Published online 27 June 2022
  1. S. Huandong, X. Tao, et al. Analysis on blackout in Great Britain power grid on August 9th, 2019 and its enlightenment to power grid in China[J]. Proceedings of the CSEE, 2019, 39(21): 6183–6192. [Google Scholar]
  2. S. Yinbiao, Z. Zhigang, Guo Jianbo, et al. Study on key factor sand solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37(1): 1–9. [Google Scholar]
  3. C. Guoping, L. Mingjie, et al. Study on technical bottleneck of newenergy development [J]. Proceedings of the CSEE, 2017. 37(1): 20–27. [Google Scholar]
  4. L. Hengxian. Unit commitment of High-proportion of Wind Power System Considering Frequency Safety Constraints[J]. Power System Technology, 2020, Network publishing. [Google Scholar]
  5. L. Xiong; Coordinated Control Schemes of SuperCapacitor and Kinetic Energy of DFIG for System Frequency Support, in Energies, vol.11, no.1, pp.103, January 2018. [CrossRef] [Google Scholar]
  6. L. Mingjie. Characteristic Analysis and Operational Control of Large-Scale Hybrid UHV AC/Dc Power Grids[J]. Power System Technology, 2020, 40(4): 985–991. [Google Scholar]
  7. Q. Xiaohui, S. Lining, et al. Functional qrientation discrimination of inertia support and primary frequency regulation of virtual synchronous generator in large power grid[J]. Automation of Electric Power System, 2018, 49(2): 36–43. [Google Scholar]
  8. Hydro-Québec TransÉnergie. Transmission provider technical requirements for the connection of power plants to the Hydro-Québec transmission system [R]. Hydro-Québec, February 2009. [Google Scholar]
  9. ESB National Grid. Grid code provisions for wind generators in Ireland, 2004.12. [Google Scholar]
  10. Dudurych I.M., Holly M., Power, M. Integration of Wind Power Generation in the Irish Grid[C]. Power Engineering Society General Meeting, 2006. [Google Scholar]
  11. Swidish TSO. The black out in southern Sweden and eastern Denmark [EB/OL]. http://www.svk.se/upload/3813/IEEE_engelskpres entation_jul2003_2230.pdf. [Google Scholar]
  12. Technical Regulation TF 3.2.5. Wind turbines connected to grids with voltages above 100 kV[R]. Denmark: Elkraft System and Eltra, 2004. [Google Scholar]
  13. Elkraft system and Eltra. Wind turbines connected to grids with voltages above 100 kV[R]. Errits: Elkraft system and Eltra, 2004. [Google Scholar]
  14. E. ON Netz GmbH. Grid Connection Regulations for High and Extra High voltage[R]. Bayreuth: E. ON Netz GmbH, 1st April 2006. [Google Scholar]
  15. Medium Voltage Directive, German Association of Energy and Water Industries (BDEW). 2008. [Google Scholar]
  16. Network code on load frequency control and reserves[S]. Switzerland: ENTSO-E, 2013. [Google Scholar]
  17. European Network of Transmission System Operators for Electricity. Network Code for Requirements for Grid Connection Application to all Generators[R]. ENTSOE, 212. [Google Scholar]
  18. Christi, W. Analysis of requirements in selected grid codes[M]. UK: National Grid, 2006. [Google Scholar]
  19. Boëda D., Teninge A., Roye D., et al. Contribution of Wind Farms to Frequency Control and Network Stability[R]. Paris: CIGRE, 2006. [Google Scholar]
  20. Marcela M.R., Andreas S., Oriol G.B. Comparison of European Interconnection and Operation Requirements for Wind Farms[C]. ICREPQ: Spain, 2009. [Google Scholar]
  21. The Hellenic Grid Code: Independent Power Transmission Operator. Network Code “Requirements for Generators”, 2019. [Google Scholar]
  22. Hannele H. Impacts of large amounts of wind power on design and operation of power systems, results of IEA collaboration[C]. Transmission Networks of Offshore Wind Farms, 2009 Bremen. [Google Scholar]
  23. National Grid Electricity Transmission Plc. The grid code[R]. UK: National Grid Electricity Transmission Plc. 2012. [Google Scholar]
  24. Müfit A., Ömer G., Remus, T. Overview of Recent Grid Codes for Wind Power Integration[C]. OPTIM 2010. p1152–1160. [Google Scholar]
  25. Australian Energy Market Commission. National electricity rules-chapter 5-grid connection[R]. Australian: Australian Energy Market Commission, 2012. [Google Scholar]
  26. Finland Power Grid Corp. Code for connection of wind power plants to finish power system[Z]. Finland: Finland Power Grid Corp. 2009. [Google Scholar]
  27. Italian blackout sparked by insufficient control [EB/OL]. http://www.swissinfo.org/sen/Swissinfo.html?site Sect =111&sid=4485955 [Google Scholar]
  28. National Grid SA and Saudi Electricity Company. The technical requirements for connecting new generation to the transmission system. 2016. [Google Scholar]
  29. G.E. Energy. Modeling of GE wind turbine generators for grid studies[R]. General Electric International, Inc. 2010, USA. [Google Scholar]
  30. Kara Clark, Nicholas W. Miller, Juan J. Sanchez Gasca. Modeling od GE Wind Turbine Generators for Grid Studies. General Electric International, Inc. 2010. 4 [Google Scholar]
  31. Y. Zhang, J. Bank, Y. H. Wan. Synchrophasor Measurement- Based Wind Plant Inertia Estimation. IEEE Green Technologies Conference Denver, Colorado April 4-5, 2013 [Google Scholar]
  32. Vestas. Vestas Online Power Plant Controller. Vestas-americas@vestas.com. [Google Scholar]
  33. Richard Springer, Active power control from wind power, http://zh.scribd.com/doc/67045153/ Active power control from wind power. [Google Scholar]
  34. Gao W.Z., Wu Z.P., Wang J.H., et al. A review of inertia and frequency control technologies for variable speed wind turbine[C]. Control and Decision Conference, Guiyang, China, 2013: 2527–2533. [Google Scholar]
  35. Slavormir Seman, Raimo Sakki, Inertial response generators and the power electronics. www.nrel.gov/electricity/transmission/pdfs/Seman.pdf. [Google Scholar]
  36. Enercon GmbH, Enercon wind energy converters technology science, www.enecon.de/p/downloads/EN_Eng_Tands_0710.pdf. [Google Scholar]
  37. L. Yang. Analysis of Renewable Energy Participation in Primary Frequency Regulation and Parameter Setting Scheme of Power Grid[J]. Power System Technology, 2020, 44(2): 683–689. [Google Scholar]
  38. W. Zhanying. Analysis of Frequency Modulation Parameter for Regional Closed-loop Speed Control System with Different Load Disturbance Based on PSCAD[J]. Shaanxi Electric Power, 2014, 42(11):74–76,81. [Google Scholar]
  39. L. Ju, Y. Wei. Prospect of Technology for LargeScale Wind Farm Participating into Power Grid Frequency Regulation[J]. Power System Technology, 2014, 38 (3): 638–646. [Google Scholar]
  40. B. Yuqing, L. Yang, et al. On demand response participating in the frequency control of the grid under high wind penetration[J]. Power System Protection and Control, 2015, 43(4): 32–37. [Google Scholar]
  41. Fan Guannan, Liu Jizhen, Meng Hongmin, et al. Research on primary frequency control for wind farms under output-restricted condition[J]. Power System Technology, 2016, 40(7): 1–9. [Google Scholar]
  42. Tang Xisheng, Miao Fufeng, Qi Zhiping, et al. A coordination control method of wind power and energy storage cluster: China, 201210477712. 3[P]. 2013-04-10 (in Chinese). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.