Open Access
E3S Web Conf.
Volume 355, 2022
2022 Research, Invention, and Innovation Congress (RI²C 2022)
Article Number 01005
Number of page(s) 11
Section Energy Technology
Published online 12 August 2022
  1. EU, Renewable Energy Directive, (European Commission: Directive 2009/28/EC, revised in 2018) (Accessed on 20 June 2022) [Google Scholar]
  2. D. Singh, D. Sharma, S.L. Soni, S. Sharma, P.K. Sharma, A. Jhalani, A review on feedstocks, production processes, and yield for different generations of biodiesel, Fuel, 262 (2020): 116553 [CrossRef] [Google Scholar]
  3. B.K. Selvan, S. Das, M. Chandrasekar, R. Girija, S.J. Vennison, N. Jaya, N. Rajamohan, Utilization of biodiesel blended fuel in a diesel engine–combustion engine performance and emission characteristics study, Fuel, 311 (2022): 122621 [CrossRef] [Google Scholar]
  4. R.R. Kumal, J. Liu, A. Gharpure, R.L. Vander Wal, J.K. Kinsey, B. Giannelli, J.J. Swanson, Impact of biofuel blends on black carbon emissions from a gas turbine engine, Energy & Fuels, 34(4) (2020): 4958-4966 [CrossRef] [PubMed] [Google Scholar]
  5. S. Dharma, H.C. Ong, H.H. Masjuki, A.H. Sebayang, A.S. Silitonga, An overview of engine durability and compatibility using biodiesel-bioethanol-diesel blends in compression-ignition engines, Energy Conversion and Management, 128 (2016): 66-81 [CrossRef] [Google Scholar]
  6. H.M. Mahmudul, F.Y. Hagos, R. Mamat, A.A. Adam, W.F.W. Ishak, R. Alenezi, Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – a review, Renewable and Sustainable Energy Review, 72 (2017): 497-509 [CrossRef] [Google Scholar]
  7. Biodiesel Benefits and Considerations, (Accessed on April 3, 2022) [Google Scholar]
  8. M. Mofijur, F. Kusumo, I.M.R. Fattah, H.M. Mahmudul, M.G. Rasul, A.H. Shamsuddin, T.M.I. Mahlia, Resource recovery from waste coffee grounds using ultrasonic-assisted technology for bioenergy production, Energies, 13(7) (2020): 1770 [CrossRef] [Google Scholar]
  9. I.S.A. Manaf, N.H. Embong, S.N.M. Khazaai, M.H.A. Rahim, M.M. Yusoff, K.T. Lee, G.P. Maniam, A review for key challenges of the development of biodiesel industry, Energy Conversion and Management, 185 (2019): 508-517 [CrossRef] [Google Scholar]
  10. P. Katuwal, R. Regmi, S. Joshi, J. Bhattarai, Assessment on the effective green-based Nepal origin plants extract as a corrosion inhibitor for mild steel in bioethanol and its blend, European Journal of Advanced Chemistry Research, 15 (2020): 1-13 [Google Scholar]
  11. A. Shehzad, A. Ahmed, M.M. Quazi, M. Jamshaid, S.M. Ashrafur Rahman, M.H. Hassan, H.M.A. Javed, Current research and development status of corrosion behavior of automotive materials in biofuels, Energies, 14 (2021): 1440 [CrossRef] [Google Scholar]
  12. B.N. Subedi, K. Amgain, S. Joshi, J. Bhattarai, Green approach to corrosion inhibition effect of Vitex negundo leaf extract on aluminium and copper metals in biodiesel and its blend, International Journal of Corrosion and Scale Inhibitor, 8(3) (2019):744-759 [Google Scholar]
  13. M. Tisza, I. Czinege, Comparative study of the application of steels and aluminium in lightweight production of automotive parts, International Journal of Lightweight Materials and Manufacture, 1(4) (2018): 229-238 [CrossRef] [Google Scholar]
  14. C. Berlanga-Labari, M.V. Biezma-Moraleda, P.J. Rivero, Corrosion of cast aluminum alloys: a review, Metals, 10(10) (2020): 1384 [CrossRef] [Google Scholar]
  15. S.V. Sajadifar, E. Scharifi, T. Wegener, M. Krochmal, S. Lotz, K. Steinhoff, T. Niendorf, On the low-cycle fatigue behavior of thermo-mechanically processed, high-strength aluminum alloys, International Journal of Fatigue, 156 (2022): 106676 [CrossRef] [Google Scholar]
  16. M.F.X. Wagner, Light-weight aluminum-based alloys- from fundamental science to engineering applications, Metals, 8(4) (2018): 260-264 [CrossRef] [Google Scholar]
  17. B. Jones, G. Mead, P. Steevens, M. Timanus, The effect of E20 on metals used in automotive fuel system components, Report No.: 2-22-2008 (St. Paul, USA: Minnesota Department of Agriculture; 2008). [Google Scholar]
  18. Y.M. Pusparizkita, A. Harimawan, H. Devianto, T. Setiadi, Effect of bacillus megaterium biofilm and its metabolites at various concentration biodiesel on the corrosion of carbon steel storage tank, Biointerface Research in Applied Chemistry, 12(4) (2022): 5698-5708 [Google Scholar]
  19. A. Amaya, O. Piamba, J. Olaya, Corrosiveness of palm biodiesel in gray cast iron coated by thermo-reactive diffusion vanadium carbide coating, Coatings, 9(2) (2019): 135 [CrossRef] [Google Scholar]
  20. M. Soares, L.O. Berbel, C. Vieira, D.C.S. Oliszeski, C.B. Furstenberger, E.P. Banczek, Study of corrosion of AA 3003 aluminum in biodiesel, diesel, ethanol and gasoline media, Material Science Forum, 1012 (2020): 407-411 [CrossRef] [Google Scholar]
  21. C.I. Rocabruno-Valdes, J.A. Hernandez, A.U. Juantorena, E.G. Arenas, R. Lopez-Sesenes, V.M. Salinas-Bravo, J.G. Gonzalez-Rodriguez, An electrochemical study of the corrosion behavior of metals in canola biodiesel, Corrosion Engineering, Science and Technology, 53(2) (2018): 152-162 [Google Scholar]
  22. L. Longanesi, A.P. Pereira, N. Johnston, C.J. Chuck, Oxidative stability of biodiesel: recent insights, Biofuels, Bioproducts and Biorefining, 16(1) (2022): 265-289 [CrossRef] [Google Scholar]
  23. M. Somai, A. Giri, A. Roka, J. Bhattarai, Comparative studies on the anti-corrosive action of waterproofing agent and plant extract to steel rebar, Macromolecular Symposiain press, (2022). [Google Scholar]
  24. S. Bouazama, J. Costat, J.M. Desjobertb, A. BenAli, A. Guenbou, M. Tabyaoui, Influence of Lavandula dentata essential oil on the corrosion inhibition of carbon steel in 1 M HCl solution, International Journal of Corrosion and Scale Inhibitor, 8(1) (2019): 25-41 [Google Scholar]
  25. J. Bhattarai, M. Rana, M.R. Bhattarai, S. Joshi, Effect of green corrosion inhibitor of Callistemon plant extract on the corrosion behavior of mild steel in NaCl and HCl solutions, In Proceedings of CORCON 2016 (Paper No. MI-17, 2016, New Delhi, India: NIGIS/NACE, p. 11) [Google Scholar]
  26. F.D. Fernandes, L.M. Ferreira, M.L.C.P. da Silva, Application of Psidium guajava L leaf extract as a green corrosion inhibitor in biodiesel: biofilm formation and encrustation, Applied Surface Science Advances, 6 (2021): 100185 [CrossRef] [Google Scholar]
  27. P. Katuwal, K.R. Gaire, J. Bhattarai, Study on the effects of ethylenediamine and plant extract as a corrosion inhibitor for mild steel passivation in bioethanol, In Proceedings of CORCON-2018 (Paper No. MCI-35, Jaipur, India: NIGIS/ NACE, 2018, p. 9) [Google Scholar]
  28. R.M. Kunwar, K.P. Shrestha, R.W. Bussmann, Traditional herbal medicine in far West Nepal: a pharmacological appraisal, Journal of Ethnobiology and Ethnomedicine, 6 (2010): 35 [CrossRef] [PubMed] [Google Scholar]
  29. T. Shrestha, J. Lamichhane, Assessment of phytochemicals, antimicrobial, antioxidant and cytotoxicity activity of methanolic extract of Tinospora cordifolia (Gurjo), Nepal Journal of Biotechnology, 9(1) (2021): 18-23 [CrossRef] [Google Scholar]
  30. M. Rana, S. Joshi, J. Bhattarai, Extract of different plants of Nepalese origin as green corrosion inhibitor for mild steel in 0.5 M NaCl solution, Asian Journal of Chemistry, 29(5) (2017): 1130-1134 [CrossRef] [Google Scholar]
  31. A. Saxena, D. Prasad, K.K. Thakur, J. Kaur, PDP, EIS, and surface studies of the low-carbon steel by the extract of Tinospora cordifolia: a green approach to the corrosion inhibition, Arabian Journal of Science and Engineering, 46 (2021): 425-436 [CrossRef] [Google Scholar]
  32. M.H. Hussin, M.J. Kassim, N.N. Razali, N.H. Dahon, D. Nasshorudin, The effect of Tinospora crispa extracts as a natural mild steel corrosion inhibitor in 1 M HCl solution, Arabian Journal of Chemistry, 9 (2016): S616-S624 [CrossRef] [Google Scholar]
  33. R. Guzatto, Defferrari D, Reiznautt QB, Cadore IR, Samios D. Trans-esterification double step process modification for ethyl ester biodiesel production from vegetable and waste oil. Fuel, 92(1) (2021): 197-203 [Google Scholar]
  34. J. Bhattarai, M. Somai, N. Acharya, A. Giri, A. Roka, N.R. Phulara, Study on the effects of green-based plant extracts and water-proofers as anti-corrosion agents for steel-reinforced concrete slabs, E3S Web of Conferences, 302 (2021): 02018 [CrossRef] [EDP Sciences] [Google Scholar]
  35. J. Bhattarai, Study on the synergism of corrosion-resistant W-xNb alloys by angle-resolved X-ray photoelectron spectroscopy, Ceylon Journal of Science, 50(4) (2021): 513-520 [CrossRef] [Google Scholar]
  36. D.B. Pokharel, D.B. Subedi, D. VK, J. Bhattarai, Effects of tungstate and nitrite ions as corrosion inhibitor for Cr-10Zr-10W alloy in 0.5 M NaCl solution, International Journal of Metal and Alloys, 5(1) (2019): 11-19 [Google Scholar]
  37. Y.I. Kuznetsov, N.N. Andreev, S.S. Vesely, Why we reject papers with calculations of inhibitor adsorption based on data on protective effects? International Journal of Corrosion and Scale Inhibitor, 4(2) (2015): 108-109 [CrossRef] [Google Scholar]
  38. I. Langmuir, The constitution and fundamental properties of solids and liquids: part I-Solid, Journal of the American Chemical Society, 38(11) (1916): 2221-2295 [CrossRef] [Google Scholar]
  39. M.I. Temkin, Adsorption equilibrium and the kinetics of processes on non-homogeneous surfaces and in the interaction between adsorbed molecules, Zhurnal Fiziche-Skoi Khimii, 15 (1941): 296-332 [Google Scholar]
  40. F.T. Kamga, Modeling adsorption mechanism of paraquat onto Ayous (Triplochiton scleroxylon) wood sawdust, Applied Water Science, 9 (2019): 1 [CrossRef] [Google Scholar]
  41. D.B. Subedi, D.B. Pokharel, J. Bhattarai, Assessment on the effects of sodium salts of tungstate and nitrite as green inhibitor for the corrosion of Cr–5Ni–53W alloy in 0.5 M NaCl solution, International Journal of Metallurgy and Alloys, 6(1) (2020): 25-36 [Google Scholar]
  42. M.A. Deyab, Corrosion inhibition of aluminum in biodiesel by ethanol extracts of Rosemary leaves, Journal of the Taiwan Institute of Chemical Engineers, 58 (2016): 536-541 [CrossRef] [Google Scholar]
  43. ASTM D6751-14, Standard specification for biodiesel fuel blend stock (B100) for middle distillate fuels (West Conshohocken, USA: ASTM International, 2014) [Google Scholar]
  44. C.R. Whetstine, GC-MS analysis of synthesized biodiesel, In Forensic Science Master’s Projects-1, 2020 [Google Scholar]
  45. A.S. Luna, A.P. Da Silva, J. Ferre, R. Boque, Classification of edible oils and modeling of their physico-chemical properties by chemometric methods using mid-IR spectroscopy, Spectrochimi Acta A: Molecular and Biomolecular Spectroscopy, 100 (2013): 109-114 [CrossRef] [Google Scholar]
  46. A.S. Silitonga, A.H. Shamsuddin, T.M.I. Mahlia, J. Milano, F. Kusumo, J. Siswantoro, … H.C. Ong, Biodiesel synthesis from Ceiba pentandra oil by microwave irradiation-assisted transesterification: ELM modeling and optimization, Renewable Energy, 146 (2020): 1278-1291 [CrossRef] [Google Scholar]
  47. A.S. Luna, J.S. de Gois, Application of chemometric methods coupled with vibrational spectroscopy for the discrimination of plant cultivars and to predict physicochemical properties using R, Comprehensive Analytical Chemistry, 80 (2018): 165-194 [CrossRef] [Google Scholar]
  48. J.Y. Chen, H. Zhang, J. Ma, T. Tuchiya, Y. Miao, Determination of the degree of degradation of frying rapeseed oil using Fourier-transform infrared spectroscopy combined with partial least-squares regression, International Journal of Analytical Chemistry, 2015 (2015): 185367 [PubMed] [Google Scholar]
  49. A.T. Hoang, M. Tabatabaei, M. Aghbashlo, A review of the effect of biodiesel on the corrosion behavior of metals/alloys in diesel engines, Energy Sources Part A: Recovery, Utilization, and Environmental Effects, 42 (23) (2020): 2923-2943 [CrossRef] [Google Scholar]
  50. M. Fazal, A. Haseeb, H. Masjuki, Degradation of automotive materials in palm biodiesel, Energy, 40(1) (2012): 76-83 [CrossRef] [Google Scholar]
  51. C.L. Kugelmeier, M.R. Monteiro, R. da Silva, S.E. Kuri, V.L. Sordi, C.A. Della Rovere, Corrosion behavior of carbon steel, stainless steel, aluminum and copper upon exposure to biodiesel blended with petrodiesel, Energy, 226 (2021): 120344 [CrossRef] [Google Scholar]
  52. A. Devi, V.K. Das, D. Deka, Ginger extract as a nature-based robust additive and its influence on the oxidation stability of biodiesel synthesized from non-edible oil, Fuel, 187 (2017): 306-314 [CrossRef] [Google Scholar]
  53. M. Mobin, I. Ahmad, M. Basik, M. Murmu, P. Banerjee, Experimental and theoretical assessment of almond gum as an economically and environmentally viable corrosion inhibitor for mild steel in 1 M HCl, Sustainable Chemistry and Pharmacy, 18 (2020): 100337 [CrossRef] [Google Scholar]
  54. M.N. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models: a review, Journal of Hazardous Materials, 393 (2020): 122383 [CrossRef] [PubMed] [Google Scholar]
  55. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, Journal of Chemistry, 2017 (2017):3039817 [Google Scholar]
  56. P. Magrati, D.B. Subedi, D.B. Pokharel, J. Bhattarai, Appraisal of different inorganic inhibitors action on the corrosion control mechanism of mild steel in HNO3 solution, Journal of Nepal Chemical Society, 41(1) (2020): 64-73 [CrossRef] [Google Scholar]
  57. D. Vk, J. Bhattarai, Effect of sodium tungstate as a green corrosion inhibitor on the passivation behavior of mild steel in aggressive media, International Journal of Applied Science and Biotechnology, 4(2) (2016): 183-190 [CrossRef] [Google Scholar]
  58. F. Batool, J. Akbar, S. Iqbal, S. Noreen, S.N.A. Bukhari, Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: An overview of linear and nonlinear approach and error analysis, Bioinorganic Chemistry and Applications, 2018 (2018): 3463724 [Google Scholar]
  59. S.L. Lam, R. Ballinger, C. Forsberg, Modeling and predicting total hydrogen adsorption in nanoporous carbon materials for advanced nuclear systems, Journal of Nuclear Materials, 511 (2018): 328-340 [CrossRef] [Google Scholar]
  60. C. Aharoni, M. Ungarish, Kinetics of activated chemisorption Part 2: theoretical models, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 73 (1977): 456-464 [CrossRef] [Google Scholar]
  61. V. Sagar, A.H.S. Kumar, Efficacy of natural compounds from Tinospora cordifolia against SARS-CoV-2 protease, surface glycoprotein and RNA polymerase, Biology, Engineering, Medicine and Science Reports, 6(1) (2020): 6-8 [CrossRef] [Google Scholar]
  62. E. Okon, W. Kukula-Koch, A. Jarzab, M. Halasa, A. Stepulak, A. Wawruszak, Advances in chemistry and bioactivity of magnoflorine and magnoflorine-containing extracts, International Journal of Molecular Sciences, 21(4) (2020): 1330 [CrossRef] [Google Scholar]
  63. T.J. Harvey, F.C. Walsh, A.H. Nahle, A review of inhibitors for the corrosion of transition metals in aqueous acids, Journal of Molecular Liquids, 266 (2018): 160-175 [CrossRef] [Google Scholar]
  64. D.B. Pokharel, D.B. Subedi, J. Bhattarai, Study the effect of sodium nitrite as a green inhibitor for the sputter-deposited tungsten-based ternary alloys in 0.5 M NaCl solution, Bibechana 12 (2015): 1-12 [Google Scholar]
  65. I.A.W. Ma, S. Ammar, S.S.A. Kumar, K. Ramesh, S. Ramesh, A concise review on corrosion inhibitors: types, mechanisms and electrochemical evaluation studies, Journal of Coating Technology and Research, 19 (2022): 241-268 [CrossRef] [Google Scholar]
  66. D.B. Subedi, D.B. Pokharel, J. Bhattarai, Study the corrosion inhibition mechanism of sputter-deposited W-42Cr-5Ni and Cr-10Zr-10W alloys by sodium nitrite as a green inhibitor in 0.5 M NaCl and 1 M NaOH solutions, International Journal of Applied Science and Biotechnology, 2(4) (2014): 537-543 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.