Open Access
Issue |
E3S Web Conf.
Volume 359, 2022
The 7th International Conference on Energy, Environment, Epidemiology and Information System (ICENIS 2022)
|
|
---|---|---|
Article Number | 02039 | |
Number of page(s) | 12 | |
Section | Culture and Environmental Management | |
DOI | https://doi.org/10.1051/e3sconf/202235902039 | |
Published online | 31 October 2022 |
- A. Naila, G. Meerdink, V. Jayasena, A.Z. Sulaiman, A.B. Ajit, G. Berta. A review on global metal accumulators—mechanism, enhancement, commercial application, and research trend. Environ Sci Pollut Res. 2019;26(26):26449–71. [CrossRef] [PubMed] [Google Scholar]
- R. Chandra, N.K. Dubey, V. Kumar. Phytoremediation of environmental pollutants. Phytoremediation of Environmental Pollutants. CRC Press; 2017. 1–510 p. [Google Scholar]
- I. Gul, M. Manzoor, J. Kallerhoff, M. Arshad. Enhanced phytoremediation of lead by soil applied organic and inorganic amendments: Pb phytoavailability, accumulation and metal recovery. Chemosphere [Internet]. 2020;258:127405. Available from: https://doi.org/10.1016/j.chemosphere.2020.127405 [CrossRef] [Google Scholar]
- V. Shah, A. Daverey. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ Technol Innov [Internet]. 2020;18:100774. Available from: https://doi.org/10.1016/j.eti.2020.100774 [CrossRef] [Google Scholar]
- Y.C. Shinta, B. Zaman, A. Sumiyati. Citric Acid and EDTA as chelating agents in phytoremediation of heavy metal in polluted soil: A review. IOP Conf Ser Earth Environ Sci. 2021;896(1). [Google Scholar]
- B. Duarte, M. Delgado, I. Caçador. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere. 2007;69(5):836–40. [CrossRef] [PubMed] [Google Scholar]
- N. Hidayati. Mekanisme fisiologis tumbuhan hiperakumulator logam berat. J Tek Lingkung. 2013;14(2):75–82. [Google Scholar]
- K.U. Khair, M. Farid, U. Ashraf, M. Zubair, M. Rizwan, S. Farid. Citric acid enhanced phytoextraction of nickel (Ni) and alleviate Mentha piperita (L.) from Ni-induced physiological and biochemical damages. Environ Sci Pollut Res. 2020;27(21):27010–22. [CrossRef] [PubMed] [Google Scholar]
- M. Ashraf, M.A. Ozturk. Plant Adaptation and Phytoremediation. Springer Dordrecht Heidelberg London New York; 2010. 16 p. [Google Scholar]
- G. Kvesitadze, G. Khatisashvili, T. Sadunishvili, J.J. Ramsden. Biochemical Mechanisms of Detoxification in Higher Plants. Germany: Springer Berlin Heidelberg; 2006. [Google Scholar]
- H. González, D. Fernández-Fuego, A. Bertrand, A. González. Effect of pH and citric acid on the growth, arsenic accumulation, and phytochelatin synthesis in Eupatorium cannabinum L., a promising plant for phytostabilization. Environ Sci Pollut Res. 2019;26(25):26242–53. [CrossRef] [PubMed] [Google Scholar]
- G.N. Koptsik. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Sci. 2014;47(9):923–39. [CrossRef] [Google Scholar]
- T. D. Nichols. Rhizosphere Microbial Populations in Contaminated Soils. Methods. 1997;165–78. [PubMed] [Google Scholar]
- F. Liang, Z.H. Guo, M.S. Hui, X.X Yuan, C. Peng, W.L Hua, et al. Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. J Cent South Univ. 2019;26(11):2987–97. [CrossRef] [Google Scholar]
- I.A. Golubev. Handbook Of Phytoremediation. Golubev IA, editor. New York: Nova Science Publisher, Inc; 2011. [Google Scholar]
- C. Syukur, O. Trisilawati, E. Hadipoentyanti. Sirkuler: Membangun Kebun Benih Varietas Unggul Akar Wangi. Sirkuler Inf Teknol Tanam Rempah dan Obat [Internet]. 2020;8. Available from: https://balittro.litbang.pertanian.go.id/wp-content/uploads/2013/03/2020-Sirkuler-Akar-Wangi.pdf [Google Scholar]
- P. Römkens, L. Bouwman, J. Japenga, C. Draaisma. Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut. 2002;116(1):109–21. [CrossRef] [PubMed] [Google Scholar]
- G. Abbas, M. Saqib, J. Akhtar, G. Murtaza, M. Shahid, A. Hussain. Relationship between rhizosphere acidification and phytoremediation in two acacia species. J Soils Sediments. 2016;16(4):1392–9. [CrossRef] [Google Scholar]
- J. Vangronsveld, R. Herzig, N. Weyens, J. Boulet, K. Adriaensen, A. Ruttens. Phytoremediation of contaminated soils and groundwater: Lessons from the field. Environ Sci Pollut Res. 2009;16(7):765–94. [CrossRef] [PubMed] [Google Scholar]
- D.P. Mellor. Chelating Agents and Metal Chelates. J Am Chem Soc. 1965;87(11):2527–8. [Google Scholar]
- X. Zhang, B. Zhong, M. Shafi, J. Guo, C. Liu, H. Guo. Effect of EDTA and citric acid on absorption of heavy metals and growth of Moso bamboo. Environ Sci Pollut Res. 2018;25(19):18846–52. [CrossRef] [PubMed] [Google Scholar]
- Y. Li, Y. Wang, M.A. Khan, W. Luo, Z. Xiang, W. Xu. Effect of plant extracts and citric acid on phytoremediation of metal-contaminated soil. Ecotoxicol Environ Saf [Internet]. 2021;211:111902. Available from: https://doi.org/10.1016/j.ecoenv.2021.111902 [CrossRef] [Google Scholar]
- C. Turgut, M. Katie Pepe, T.J. Cutright. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut. 2004;131(1):147–54. [CrossRef] [PubMed] [Google Scholar]
- A.C. Agnello, D. Huguenot, E.D van Hullebusch, G. Esposito. Citric acid- and Tween® 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential. Environ Sci Pollut Res [Internet]. 2016;23(9):9215–26. Available from: http://dx.doi.org/10.1007/s11356-015-5972-7 [CrossRef] [PubMed] [Google Scholar]
- E.M. Cooper, J.T. Sims, S.D. Cunningham, J.W. Huang, W.R. Berti. Chelate-Assisted Phytoextraction of Lead from Contaminated Soils. J Environ Qual. 1999;(November):2134. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.