Open Access
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 07002
Number of page(s) 10
Section Human Behaviour
Published online 01 December 2022
  1. Agarwal, S. (2016) Review on application of augmented reality in civil engineering International Conference on Inter disciplinary Research in Engineering and Technology. [Google Scholar]
  2. Ahmed, Shakil. “A review on using opportunities of augmented reality and virtual reality in construction project management.” Organization, Technology and Management in Construction: An International Journal 11.1 (2019): 1839–1852. [CrossRef] [Google Scholar]
  3. Al Haderi, S., Rahim, N. A., & Bamahros, H. (2018). Top management support accelerates the acceptance of information technology. Social sciences, 13(1), 175–189. [Google Scholar]
  4. Al-Gahtani, S. S., Hubona, G. S., & Wang, J. (2007). Information technology (IT) in Saudi Arabia: Culture and the acceptance and use of IT. Information & management, 44(8), 681–691. [CrossRef] [Google Scholar]
  5. Alves, J., Marques, B., Oliveira, M., Araújo, T., Dias, P., & Santos, B. S. (2019, April). Comparing spatial and mobile augmented reality for guiding assembling procedures with task validation. In 2019 IEEE international conference on autonomous robot systems and competitions (ICARSC) (pp. 1–6). IEEE. [Google Scholar]
  6. Aromaa, S., Aaltonen, I., Kaasinen, E., Elo, J., & Parkkinen, I. (2016, October). Use of wearable and augmented reality technologies in industrial maintenance work. In Proceedings of the 20th international academic mindtrek conference (pp. 235–242). [CrossRef] [Google Scholar]
  7. Belletier, C., Charkhabi, M., Pires de Andrade Silva, G., Ametepe, K., Lutz, M., & Izaute, M. (2021). Wearable cognitive assistants in a factory setting: a critical review of a promising way of enhancing cognitive performance and well-being. Cognition, Technology & Work, 23(1), 103–116. [CrossRef] [Google Scholar]
  8. Bosch, T., Van Rhijn, G., Krause, F., Könemann, R., Wilschut, E. S., & de Looze, M. (2020, June). Spatial augmented reality: a tool for operator guidance and training evaluated in five industrial case studies. In Proceedings of the 13th ACM International Conference on PErvasive Technologies Related to Assistive Environments (pp. 1–7). [Google Scholar]
  9. Cabero-Almenara, J., Fernández-Batanero, J. M., & Barroso-Osuna, J. (2019). Adoption of augmented reality technology by university students. Heliyon, 5(5), e01597. [CrossRef] [PubMed] [Google Scholar]
  10. Carlsén, A., & Elfstrand, O. (2018). Augmented Construction: Developing a framework for implementing Building Information Modeling through Augmented Reality at construction sites. [Google Scholar]
  11. Cheng, Tao, and Jochen Teizer. “Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications.” Automation in construction 34 (2013): 3–15. [CrossRef] [Google Scholar]
  12. Chismar, W. G., & Wiley-Patton, S. (2003, January). Does the extended technology acceptance model apply to physicians. In 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the (pp. 8-pp). IEEE. [Google Scholar]
  13. Cho, V. (2007). A study of the impact of organizational learning on information system effectiveness. International Journal of Business and Information, 2(1), 127–158. [Google Scholar]
  14. Chu, M., Matthews, J., & Love, P. E. (2018). Integrating mobile building information modelling and augmented reality systems: an experimental study. Automation in Construction, 85, 305–316. [CrossRef] [Google Scholar]
  15. Daling, L., Abdelrazeq, A., Sauerborn, C., & Hees, F. (2019, July). A comparative study of augmented reality assistant tools in assembly. In International Conference on Applied Human Factors and Ergonomics (pp. 755–767). Springer, Cham. [Google Scholar]
  16. Dedrick, J., & West, J. (2003, December). Why firms adopt open source platforms: a grounded theory of innovation and standards adoption. In Proceedings of the workshop on standard making: A critical research frontier for information systems (pp. 236–257). [Google Scholar]
  17. Delgado, J. M. D., Oyedele, L., Demian, P., & Beach, T. (2020). A research agenda for augmented and virtual reality in architecture, engineering and construction. Advanced Engineering Informatics, 45, 101122. [CrossRef] [Google Scholar]
  18. Egger, J., & Masood, T. (2020). Augmented reality in support of intelligent manufacturing-a systematic literature review. Computers & Industrial Engineering, 140, 106195. [CrossRef] [Google Scholar]
  19. Elshafey, A., Saar, C. C., Aminudin, E. B., Gheisari, M., & Usmani, A. (2020). Technology acceptance model for Augmented Reality and Building Information Modeling integration in the construction industry. J. Inf. Technol. Constr., 25, 161–172. [Google Scholar]
  20. Eriksson, P., & Johansson, T. (2021). Towards Differentiated Energy Renovation Strategies for Heritage- Designated Multifamily Building Stocks. Heritage, 4(4), 4318–4334. [CrossRef] [Google Scholar]
  21. European Commission. Renovation wave. 2022. Available from: Accessed March 2022. [Google Scholar]
  22. Fan, M., Antle, A. N., & Warren, J. L. (2020). Augmented reality for early language learning: A systematic review of augmented reality application design, instructional strategies, and evaluation outcomes. Journal of Educational Computing Research, 58(6), 1059–1100. [CrossRef] [Google Scholar]
  23. Gavish, N., Gutiérrez, T., Webel, S., Rodríguez, J., Peveri, M., Bockholt, U., & Tecchia, F. (2015). Evaluating virtual reality and augmented reality training for industrial maintenance and assembly tasks. Interactive Learning Environments, 23(6), 778–798. [CrossRef] [Google Scholar]
  24. Government offices of Sweden. 2019. Available from: Accessed March 2019 [Google Scholar]
  25. Government offices of Sweden. Sweden's third national strategy for energy efficiency renovation. [In Swedish: Sveriges tredje nationella strategi för energieffektiviserande renovering]. 2020. Available from: Accessed March 2022. [Google Scholar]
  26. Gu, Ning, Vishal Singh, and Xiangyu Wang. “Applying augmented reality for data interaction and collaboration in BIM.” (2010). [Google Scholar]
  27. Henderson, S., & Feiner, S. (2010). Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE transactions on visualization and computer graphics, 17(10), 1355–1368. [Google Scholar]
  28. Ho, P. T., Albajez, J. A., Santolaria, J., & Yagüe-Fabra, J. A. (2022). Study of Augmented Reality Based Manufacturing for Further Integration of Quality Control 4.0: A Systematic Literature Review. Applied Sciences, 12(4), 1961. [CrossRef] [Google Scholar]
  29. Hou, L., Wang, X., & Truijens, M. (2015). Using augmented reality to facilitate piping assembly: an experiment-based evaluation. Journal of Computing in Civil Engineering, 29(1), 05014007. [CrossRef] [Google Scholar]
  30. Hou, L., Wang, X., Bernold, L., & Love, P. E. (2013). Using animated augmented reality to cognitively guide assembly. Journal of Computing in Civil Engineering, 27(5), 439–451. [CrossRef] [Google Scholar]
  31. Hua, G. B. (2007). Applying the strategic alignment model to business and ICT strategies of Singapore's small and medium?sized architecture, engineering and construction enterprises. Construction management and economics, 25(2), 157–169. [CrossRef] [Google Scholar]
  32. Huang, Yao. “USING MOBILE AUGMENTED REALITY IN PERFORMANCE SUPPORT.” Performance Improvement 60.8 (2021): 9–17. [CrossRef] [Google Scholar]
  33. International Energy Agency, Perspectives for the Clean Energy Transition. The Critical Role of Buildings. 2019: France [Google Scholar]
  34. Jo, G. S., Oh, K. J., Ha, I., Lee, K. S., Hong, M. D., Neumann, U., & You, S. (2014, June). A unified framework for augmented reality and knowledge-based systems in maintaining aircraft. In Twenty-Sixth IAAI Conference. [Google Scholar]
  35. Kamel, S. (Ed.). (2010). E-strategies for technological diffusion and adoption: National ICT approaches for socioeconomic development: national ICT approaches for socioeconomic development. IGI Global. [Google Scholar]
  36. Kim, H. C., & Hyun, M. Y. (2016). Predicting the use of smartphone-based Augmented Reality (AR): Does telepresence really help?. Computers in Human Behavior, 59, 28–38. [CrossRef] [Google Scholar]
  37. Kodeboyina, S. M., & Varghese, K. (2016). Low cost augmented reality framework for construction applications. In ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction (Vol. 33, p. 1). IAARC Publications. [Google Scholar]
  38. Lee, S., Yu, J., & Jeong, D. (2015). BIM acceptance model in construction organizations. Journal of management in engineering, 31(3), 04014048. [CrossRef] [Google Scholar]
  39. Li, X., Yi, W., Chi, H. L., Wang, X., & Chan, A. P. (2018). A critical review of virtual and augmented reality (VR/AR) applications in construction safety. Automation in Construction, 86, 150–162. [CrossRef] [Google Scholar]
  40. Lin, H. F. (2007). The role of online and offline features in sustaining virtual communities: an empirical study. Internet Research. [Google Scholar]
  41. Liu, D., Lu, W., & Niu, Y. (2018). Extended technologyacceptance model to make smart construction systems successful. Journal of Construction Engineering and Management, 144(6), 04018035. [CrossRef] [Google Scholar]
  42. Liu, F. and Seipel, S., 2018. Precision study on augmented reality-based visual guidance for facility management tasks. Automation in Construction, 90, pp.79–90. [CrossRef] [Google Scholar]
  43. Lo, J. H., & Lai, Y. F. (2019, July). The Study of using Augmented Reality Technique in Children's Natural Ecology Learning by Technology Acceptance Model. In 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 1045–1046). IEEE. [CrossRef] [Google Scholar]
  44. Loch, F., Quint, F., & Brishtel, I. (2016, September). Comparing video and augmented reality assistance in manual assembly. In 2016 12th International Conference on Intelligent Environments (IE) (pp. 147–150). IEEE. [CrossRef] [Google Scholar]
  45. López, F. et al. (2018) ‘A Review of Heritage Building Information Modeling (H-BIM)’, Multimodal Technologies and Interaction. Multidisciplinary Digital Publishing Institute, 2(2), p. 21. doi: 10.3390/mti2020021. [CrossRef] [Google Scholar]
  46. Lu, Ying, and Yunxuan Deng. “What Drives Construction Practitioners’ Acceptance of Intelligent Surveillance Systems? An Extended Technology Acceptance Model.” Buildings 12.2 (2022): 104. [CrossRef] [Google Scholar]
  47. Masood, T., & Egger, J. (2020). Adopting augmented reality in the age of industrial digitalisation. Computers in Industry, 115, 103112. [CrossRef] [Google Scholar]
  48. McCoy, S., Everard, A., & Jones, B. M. (2005). An examination of the technology acceptance model in Uruguay and the US: A focus on culture. Journal of Global Information Technology Management, 8(2), 27–45. [CrossRef] [Google Scholar]
  49. Mohd, H., Syed-Mohamad, S. M., & Zaini, B. J. (2005). CORRELATION BETWEEN INFORMATION QUALITY, USER ACCEPTANCE AND DOCTORS’ATTITUDE OF EMR SYSTEM. ICOQSIA 2005, 6-8 December, Penang, Malaysia, 1–6. [Google Scholar]
  50. Nikas, A., Poulymenakou, A., & Kriaris, P. (2007). Investigating antecedents and drivers affecting the adoption of collaboration technologies in the construction industry. Automation in construction, 16(5), 632–641. [CrossRef] [Google Scholar]
  51. Okimoto, M. L. L., Okimoto, P. C., & Goldbach, C. E. (2015). User experience in augmented reality applied to the welding education. Procedia Manufacturing, 3, 6223–6227. [CrossRef] [Google Scholar]
  52. Park, Y., Son, H., & Kim, C. (2012). Investigating the determinants of construction professionals' acceptance of web-based training: An extension of the technology acceptance model. Automation in construction, 22, 377–386. [CrossRef] [Google Scholar]
  53. Rapaccini, M., Porcelli, I., Espíndola, D. B., & Pereira, C. E. (2014). Evaluating the use of mobile collaborative augmented reality within field service networks: the case of Océ Italia-Canon Group. Production & Manufacturing Research, 2(1), 738–755. [CrossRef] [Google Scholar]
  54. Rasimah, C. M. Y., Ahmad, A., & Zaman, H. B. (2011). Evaluation of user acceptance of mixed reality technology. Australasian Journal of Educational Technology, 27(8). [CrossRef] [Google Scholar]
  55. Salovaara, A., & Tamminen, S. (2009). Acceptance or appropriation? A design-oriented critique of technology acceptance models. In Future interaction design II (pp. 157–173). Springer, London. [CrossRef] [Google Scholar]
  56. Scott, H., Baglee, D., O'Brien, R., & Potts, R. (2020). An investigation of acceptance and e-readiness for the application of virtual reality and augmented reality technologies to maintenance training in the manufacturing industry. International Journal of Mechatronics and Manufacturing Systems, 13(1), 39–58. [CrossRef] [Google Scholar]
  57. Stigall, J., & Sharma, S. (2019, September). Evaluation of mobile augmented reality application for building evacuation. In Proceedings of 28th International Conference (Vol. 64, pp. 109–118). [Google Scholar]
  58. Suárez-Warden, F., Mendívil, E. G., Rodríguez, C. A., & Garcia-Lumbreras, S. (2015). Assembly operations aided by augmented reality: an endeavour toward a comparative analysis. Procedia Computer Science, 75, 281–290. [CrossRef] [Google Scholar]
  59. Swedish Energy Agency, Energy Situation [Title in Swedish: Energiläget], Bromma, Sweden, 2021, pp. 1–86. [Google Scholar]
  60. Teizer, Jochen, Tao Cheng, and Yihai Fang. “Location tracking and data visualization technology to advance construction ironworkers' education and training in safety and productivity.” Automation in Construction 35 (2013): 53–68. [CrossRef] [Google Scholar]
  61. Terhoeven, J., Schiefelbein, F. P., & Wischniewski, S. (2018). User expectations on smart glasses as work assistance in electronics manufacturing. Procedia CIRP, 72, 1028–1032. [CrossRef] [Google Scholar]
  62. The Swedish National Board of Housing, Building and Planning. Emissions of greenhouse gases from the construction and real estate sector [In Swedish: Utsläpp av växthusgaser från bygg- och fastighetssektorn]. 2022. Available from: Accessed March 2022. [Google Scholar]
  63. Thomas, T., & Alex, J. (2020). Investigating the Implementation of Augmented Reality in Logistics. [Google Scholar]
  64. To, W. M., Lee, P. K., & Lam, K. H. (2018). Building professionals’ intention to use smart and sustainable building technologies-An empirical study. PloS one, 13(8), e0201625. [CrossRef] [PubMed] [Google Scholar]
  65. United Nations. The Paris Agreement. 2019. Available from: Accessed April 2019. [Google Scholar]
  66. Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision sciences, 27(3), 451–481. [CrossRef] [Google Scholar]
  67. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425–478. [CrossRef] [Google Scholar]
  68. Wang, R. (2022). Application of Augmented Reality Technology in Children’s Picture Books Based on Educational Psychology. Frontiers in Psychology, 13, 782958. [CrossRef] [PubMed] [Google Scholar]
  69. Wang, W. T., & Wang, C. C. (2009). An empirical study of instructor adoption of web-based learning systems. Computers & Education, 53(3), 761–774. [CrossRef] [Google Scholar]
  70. Wang, X., Kim, M. J., Love, P. E., & Kang, S. C. (2013). Augmented Reality in built environment: Classification and implications for future research. Automation in construction, 32, 1–13. [CrossRef] [Google Scholar]
  71. Wang, X., Ong, S. K., & Nee, A. Y. (2016). A comprehensive survey of augmented reality assembly research. Advances in Manufacturing, 4(1), 1–22. [CrossRef] [Google Scholar]
  72. Wang, X., Truijens, M., Hou, L., Wang, Y., & Zhou, Y. (2014). Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Automation in Construction, 40, 96–105. [CrossRef] [Google Scholar]
  73. Wang, X., Truijens, M., Hou, L., Wang, Y., & Zhou, Y. (2014). Integrating Augmented Reality with Building Information Modeling: Onsite construction process controlling for liquefied natural gas industry. Automation in Construction, 40, 96–105. [CrossRef] [Google Scholar]
  74. Wang, Xiangyu, and Phillip S. Dunston. “Design, strategies, and issues towards an augmented reality-based construction training platform.” Journal of information technology in construction (ITcon) 12.25 (2007): 363–380. [Google Scholar]
  75. Werrlich, S., Eichstetter, E., Nitsche, K., & Notni, G. (2017). An overview of evaluations using augmented reality for assembly training tasks. International Journal of Computer and Information Engineering, 11(10), 1068–1074. [Google Scholar]
  76. Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41–49. [CrossRef] [Google Scholar]
  77. Yeh, K. C., Tsai, M. H., & Kang, S. C. (2012). On-site building information retrieval by using projection-based augmented reality. Journal of Computing in Civil Engineering, 26(3), 342–355. [CrossRef] [Google Scholar]
  78. Yusoff, S. K. M. (2020). Role Perceived Price, Perceived Usefulness and Trust on the Customer’s Purchase Intention. Systematic Reviews in Pharmacy, 11(1), 1073–1081. [Google Scholar]
  79. Zaher, M., Greenwood, D., & Marzouk, M. (2018). Mobile augmented reality applications for construction projects. Construction Innovation. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.