Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 08001
Number of page(s) 8
Section Daylight Components
DOI https://doi.org/10.1051/e3sconf/202236208001
Published online 01 December 2022
  1. Ajaji, Y., & André, P. (2015). Thermal Comfort and Visual Comfort in an Office Building Equipped with Smart Electrochromic Glazing: An Experimental Study. Energy Procedia, 78, 2464–2469. https://doi.org/10.1016Zj.egypro.2015.11.230 [CrossRef] [Google Scholar]
  2. Clear, R. D., Inkarojrit, V., & Lee, E. S. (2006). Subject responses to electrochromic windows. Energy and Buildings, 38(7), 758–779. https://doi.org/10.1016Zj.enbuild.2006.03.011 [CrossRef] [Google Scholar]
  3. European Committee for Standardization CEN. (2019). EN17037:2019 Daylight in buildings. [Google Scholar]
  4. Jain, S., Karmann, C., & Wienold, J. (2021). Subjective assessment of visual comfort in a daylit workplace with an electrochromic glazed façade. Journal of Physics: Conference Series, 2042(1), 012179. https://doi.org/10.1088/1742-6596/2042/1/012179 [Google Scholar]
  5. Jain, S., Karmann, C., & Wienold, J. (2022). Behind electrochromic glazing: Assessing user’s perception of glare from the sun in a controlled environment. Energy and Buildings, 256, 111738. https://doi.org/10.1016/j.enbuild.2021.111738 [CrossRef] [Google Scholar]
  6. Jakubiec, J., & Reinhart, C. (2012). The ’adaptive zone’—A concept for assessing discomfort glare throughout daylit spaces. Lighting Research and Technology, 44(2), 149–170. https://doi.org/10.1177/1477153511420097 [Google Scholar]
  7. Lee, E. S., & DiBartolomeo, D. L. (2002). Application issues for large-area electrochromic windows in commercial buildings. Solar Energy Materials and Solar Cells, 71(4), 465–491. https://doi.org/10.1016/S0927-0248(01)00101-5 [Google Scholar]
  8. Moeck, M., Lee, E. S., Rubin, M. D., Sullivan, R., & Selkowitz, S. E. (1996). Visual quality assessment of electrochromic and conventional glazings (LBNL- 39471; CONF-9609325-4). Lawrence Berkeley National Lab., CA (United States). https://www.osti.gov/biblio/474886 [Google Scholar]
  9. Perez, R., Seals, R., & Michalsky, J. (1993). All-weather model for sky luminance distribution—Preliminary configuration and validation. Solar Energy, 50(3), 235–245. https://doi.org/10.1016/0038-092X(93)90017-I [Google Scholar]
  10. Piccolo, A. (2010). Thermal performance of an electrochromic smart window tested in an environmental test cell. Energy and Buildings, 42(9), 1409–1417. https://doi.org/10.1016/j.enbuild.2010.03.010 [CrossRef] [Google Scholar]
  11. Piccolo, A., & Simone, F. (2009). Effect of switchable glazing on discomfort glare from windows. Building and Environment, 44(6), 1171–1180. https://doi.org/10.1016/j.buildenv.2008.08.013 [CrossRef] [Google Scholar]
  12. Ward, G. J. (1994). The RADIANCE lighting simulation and rendering system. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques - SIGGRAPH ’94, 459–472. https://doi.org/10.1145/192161.192286 [Google Scholar]
  13. Ward, G. J., Wang, T., Geisler-Moroder, D., Lee, E. S., Grobe, L. O., Wienold, J., & Jonsson, J. C. (2021). Modeling specular transmission of complex fenestration systems with data-driven BSDFs. Building and Environment, 196, 107774. https://doi.org/10.1016/j.buildenv.2021.107774 [CrossRef] [Google Scholar]
  14. Wasilewski, S., Wienold, J. & Andersen, M. (2022) Critical Comparison of Annual Glare Simulation Methods. Submitted to the IBPSA-Nordic Conference 2022, Copenhagen, DK [Google Scholar]
  15. Wienold, J. (2009). Dynamic daylight glare evaluation. Proceedings of Building Simulation, 944–951. [Google Scholar]
  16. Wienold, J., & Christoffersen, J. (2006). Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy and Buildings, 38(7), 743–757. https://doi.org/10.1016/j.enbuild.2006.03.017 [CrossRef] [Google Scholar]
  17. Wienold, J. (2012), New features of evalglare. 11th International Radiance Workshop. Copenhagen, Denmark. September 12-14, 2012. [Google Scholar]
  18. Wienold, J., Iwata, T., Sarey Khanie, M., Erell, E., Kaftan, E., Rodriguez, R., Yamin Garreton, J., Tzempelikos, T., Konstantzos, I., Christoffersen, J., Kuhn, T., Pierson, C., & Andersen, M. (2019). Crossvalidation and robustness of daylight glare metrics. Lighting Research & Technology, 51(7), 983–1013. https://doi.org/10.1177/1477153519826003 [Google Scholar]
  19. Wienold, J. & Jain, S. 2021, Glare behind (blue) electrochromic glazing: Do we know how it is perceived? Do we know how we simulate? And do we know what we measure? 19th International Radiance Workshop. Bilbao, Spain. August 19-20, 2021. [Google Scholar]
  20. Wienold, J. & Andersen, M. (2022), Adaptive glare coefficient method for climate-based daylight glare analyses. To be submitted before summer 2022. [Google Scholar]
  21. World Meteorological Organization WMO (2018), Guide to Instruments and Methods of Observation (WMO- No. 8), ISBN: 978-92-63-10008-5. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.