Open Access
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 10004
Number of page(s) 14
Section Buildings, Districts and Energy
Published online 01 December 2022
  1. ADAPT Consulting. (2013). Conversion Factors for Electricity in Energy Policy. [Google Scholar]
  2. Ala-Juusela, M. et al. (2021) Workshop on Positive Energy Buildings - Definition, Environmental Sciences Proceedings, 11(1), pp. 26. Available at: https://www.mdpi.Com/2673-4931/11/1/26. [Google Scholar]
  3. Dabirian, S., Panchabikesan, K. and Eicker, U. (2022) Occupant-centric urban building energy modeling: Approaches, inputs, and data sources - A review, Energy and buildings, 257, pp. 111809. doi: 10.1016/j.enbuild.2021.111809. [CrossRef] [Google Scholar]
  4. Direktoratet for Byggkvalitet (2017) TEK17 ý 13-4. Termisk inneklima. Available at: [Google Scholar]
  5. EQUA Simulation AB (2010) Validation of IDA Indoor Climate and Energy 4.0 with respect to CEN Standards EN 15255-2007 and EN 15265-2007. [Google Scholar]
  6. EQUA Simulation AB (2013) User Manual IDA Indoor Climate and Energy. EQUA Simulation AB. [Google Scholar]
  7. EQUA Simulation AB (2022) IDA Indoor Climate and Energy. Available at: (Accessed: 30.01 2022). [Google Scholar]
  8. EQUA Simulation AB (n.d.) IDA Indoor Climate and Energy. Available at: (Accessed: 08. Dec. 2021). [Google Scholar]
  9. European Commission (2020) In focus: Energy efficiency in buildings. Available at: [Google Scholar]
  10. Fanger, P. O. (1970) Thermal comfort : analysis and applications in environmental engineering. [Google Scholar]
  11. Fjernvarme, N. (2021). Fredrikstad Fjernvarme. Retrieved 24.06 from [Google Scholar]
  12. Gunay, H. B., O'Brien, W. and Beausoleil-Morrison, I. (2016) Implementation and comparison of existing occupant behaviour models in EnergyPlus, Journal of building performance simulation, 9(6), pp. 567–588. doi: 10.1080/19401493.2015.1102969. [CrossRef] [Google Scholar]
  13. Hensen, J. L. M. and Lamberts, R. (2019) Building Performance Simulation for Design and Operation. doi: 10.1201/9780429402296. [Google Scholar]
  14. International Organization for Staandardization (2005) Ergonomics of the thermal environment - Analytical determination and interpretation of therml comfort using calculation of the PMV and PPD indices and local thermal comfort criteria (ISO 7730). ISO. [Google Scholar]
  15. IPCC (2021) Summary for Policymakers. (Climate Change 2021: The physical Science Basis. [Google Scholar]
  16. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change). Cambridge University Press. Available at: [Google Scholar]
  17. Kurnitski, J. et al. (2021) Primary Energy Balance driven Integrated Energy Design Process of Positive Energy Building, E3S Web of Conferences, 246. doi: 10.1051/e3sconf/202124613001. [Google Scholar]
  18. L. Finocchiaro et al. (2021) WP2 - Development and Demonstration of plus energy multi-storey apartment buildings in four climatic zones. NTNU. [Google Scholar]
  19. Magrini, A. et al. (2020) From nearly zero energy buildings (NZEB) to positive energy buildings (PEB): The next challenge - The most recent European trends with some notes on the energy analysis of a forerunner PEB example, Developments in the Built Environment, 3, pp. 100019. doi: 10.1016/j.dibe.2020.100019. [CrossRef] [Google Scholar]
  20. Meteotest AG (2020) Meteonorm Version 8. Available at: [Google Scholar]
  21. PVsyst AS (2021) PVsyst 7.2. Available at: [Google Scholar]
  22. Salom, J. et al. (2020) WP3 Technology in Smart Managed Plus Energy Buildings and Neighourhoods. syn.ikia. Available at: [Google Scholar]
  23. Sandberg, N. H. et al. (2021) Large potentials for energy saving and greenhouse gas emission reductions from large-scale deployment of zero emission building technologies in a national building stock, Energy policy, 152, pp. 112114. doi: 10.1016/j.enpol.2020.112114. [CrossRef] [Google Scholar]
  24. Sintef and NTNU (2018) ENØK i bygninger : effektiv energibruk. [Google Scholar]
  25. Standard Norge (2013) NS 3700 Kriterier for passivhus og lavenergibygninger Boligbygninger: Standard Norge. [Google Scholar]
  26. Standard Norge (2014) Beregning av bygningers energiytelse, Metode og data (NS 3031). [Google Scholar]
  27. Standard Norge (2017) Bygningskomponenter og -elementer Varmemotstand og varmegjennomgangskoeffisient Beregningsmetoder (NS-EN ISO 6946). [Google Scholar]
  28. Sørensen, Å. L. et al. (2021) Analysis of residential EV energy flexibility potential based on real-world charging reports and smart meter data. doi:į.enbuild.2021.110923. [Google Scholar]
  29. T. Persson, O.S.R. Kalskin Ramstad, M. Justo Alonso, K. Lorenzo, (2016) Software for modelling and simulation of ground source heating and cooling systems. Trondheim: SINTEF. [Google Scholar]
  30. Tuerk, A. et al. (2021) Integrating plus energy buildings and districts with the eu energy community framework: Regulatory opportunities, barriers and technological solutions, Buildings (Basel), 11(10), pp. 468. doi: 10.3390/buildings11100468. [CrossRef] [Google Scholar]
  31. WMO and UNEP (2000) Summary for Policymakers. Emission Scenarios. Intergovernmental Panel on Climate Change. Available at: [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.