Open Access
Issue
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 10006
Number of page(s) 8
Section Buildings, Districts and Energy
DOI https://doi.org/10.1051/e3sconf/202236210006
Published online 01 December 2022
  1. IEA (2021), Net zero by 2050 hinges on a global push to increase energy efficiency, IEA, Paris https://www.iea.org/articles/net-zero-by-2050-hinges-on-a-global-push-to-increase-energy-efficiency [Google Scholar]
  2. IEA (2021). Net Zero by 2050 - A Roadmap for the Global Energy Sector, IEA, https://www.iea.org [Google Scholar]
  3. EU. (2020). Energy performance of buildings directive. European Commission Department of Energy. [Google Scholar]
  4. IEA. (2019). Global Status Report for Buildings and Construction 2019: Towards a zero-emissions, efficient and resilient buildings and construction sector. International Energy Agency. [Google Scholar]
  5. EC. (2020). JRC Technical Report: Uncertainty and Sensitivity Analysis for policy decision making. European Commission. [Google Scholar]
  6. Langevin, J., Reyna, J.L., Ebrahimigharebhaghi, S., Holck Sandberg, N., Fennell, P., Nägeli, C., Laverge, J., Delghust, M., Van Hove, M., Webster, J., et al. (2020). Developing a common approach for classifying building stock energy models. Renewable & Sustainable Energy Reviews. 133. [Google Scholar]
  7. Cerezo Davila, C. 2017. Buildings Archetype Calibration for Effective Urban Building Energy Modelling. Massachusetts Institute of Technology. [Google Scholar]
  8. Sobol’, I. M. (1990). Sensitivity estimates for nonlinear mathematical models. Maticheskoe Modelirovanie. 2, 112–118 (in Russian), translated in English (1993). In: Mathematical Modelling and Computational Experiments. 1, 407-414. [Google Scholar]
  9. Morris M.D. (1991). Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 33, 161–174. [Google Scholar]
  10. Borgonovo, E. (2007). “A new uncertainty importance measure.” Reliability Engineering & System Safety, 92(6):771–784. [Google Scholar]
  11. Delghust, M. (2015). Improving the predictive power of simplified residential space heating demand models : a field data and model driven study. PhD dissertation, Ghent University. [Google Scholar]
  12. Delghust, M., De Weerdt, Y., Janssens, A. (2015). Zoning and intermittency simplifications in quasi-steady state models. Proceedings of the 6th International Building Physics Conference (IBPC2015). Torino, Italy. [Google Scholar]
  13. Delghust, M., Strobbe, T., De Meyer, R., Janssens, A. (2015). Enrichment of single-zone EPB-data into multi-zone models using BIM-based parametric typologies. Proceedings of the 14th International Conference of IBPSA (BS2015). Hyderabad, India. [Google Scholar]
  14. ISO. (2007). ISO 13790:2007(E) Energy performance of buildings. Calculation of energy use for space heating and cooling. Geneva, Switzerland: International Organisation for Standardisation (ISO). [Google Scholar]
  15. IEA EBC (2017). Building Energy Epidemiology. [Google Scholar]
  16. Bracke, W., Delghust, M., Laverge, J., Janssens, A. (2018). Building energy performance: sphere area as a fair nomalisation concept. Building Research & Information. 1466–4321. [Google Scholar]
  17. Defruyt, T., Delghust, M., Laverge, J., Janssens, A., Roelens, W. (2013). Evolution of energy performance of houses and the interaction with energy performance regulation: an analysis of the Flemish EPBD-database. Proceedings of CLIMA 2013. [Google Scholar]
  18. VEA. (2017). EPB-Bijlage V: Bepalingsmethode van het peil van primair energieverbruik van woongebouwen. In Belgisch Staatsblad - Moniteur Belge. Brussels, Belgium: Flemish Regional Government. [Google Scholar]
  19. Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., Tarantola, S. (2010). Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Computer Physics Communications. 181, 259–270. [CrossRef] [Google Scholar]
  20. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S. (2008). Global Sensitivity Analysis. The Primer, John Wiley and Sons. [Google Scholar]
  21. Santner, T. J., Williams, B. J., Notz, W. I. (2003). Design and Analysis of Computer Experiments, Springer-Verlag. [Google Scholar]
  22. Herman, J., Usher, W. (2017). SALib: An open-source Python library for Sensitivity Analysis. Journal of Open Source Software, 2(9), 97. doi:10.21105/joss.00097 [Google Scholar]
  23. Garcia, D., Lacarrière, B., Musy, M., Bourges, B. (2014). Application of sensitivity analysis in building energy simulations: combining first- and second-order elementary effects methods. Energy and Buildings, 68, 741–750. [CrossRef] [Google Scholar]
  24. Borgonovo, E. 2007. A new uncertainty importance measure. Reliability Engineering and System Safety 92(6), 771–784. [Google Scholar]
  25. Plischke, E., Borgonovo, E., Smith, C.L. (2013). Global sensitivity measures from given data. European Journal of Operational Research 226(3), 536–550. [CrossRef] [Google Scholar]
  26. Sarrazin, F., Pianosi, F., Wagener, T. (2016). Global Sensitivity Analysis of environmental models: Convergence and validation. Environmental Modelling & Software. 79, 135–152. [CrossRef] [Google Scholar]
  27. Heo, Y., Choudhary, R., Augenbroe, G. (2012). Calibration of building energy models for retrofit analysis under uncertainty. Energy and Buildings, 47, 550–560. [CrossRef] [Google Scholar]
  28. Yang, Z., Becerik-Gerber, B. (2015). A model calibration framework for simultaneous multi-level building energy simulation. Applied Energy, 149, 415–431. [CrossRef] [Google Scholar]
  29. Dominguez-Munoz, F. Ceejudo-Lopez, J.M., Carrillo-Andrés, A. (2010). Uncertainty in peak cooling load calculations. Energy and Buildings, 42(7), 1010–1018. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.