Open Access
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
Article Number 12001
Number of page(s) 8
Section Buildings and Flexibility
Published online 01 December 2022
  1. Bacher, P., & Madsen, H. (2011). Identifying suitable models for the heat dynamics of buildings. Energy and Buildings, 43(7), 1511–1522. [CrossRef] [Google Scholar]
  2. Berthou, T., Stabat, P., Salvazet, R., & Marchio, D. (2014). Development and validation of a gray box model to predict thermal behavior of occupied office buildings. Energy and Buildings, 74, 91–100. [CrossRef] [Google Scholar]
  3. Bøeng, A. C., Halvorsen, B., & Larsen, B. M. (2014). Kartlegging av oppvarmingsutstyr i husholdningene. In Rapport 2014/45. [Google Scholar]
  4. Esther, B. P., & Kumar, K. S. (2016). A survey on residential Demand Side Management architecture, approaches, optimization models and methods. Renewable and Sustainable Energy Reviews, 59, 342–351. https://doi.Org/10.1016/J.RSER.2015.12.282 [CrossRef] [Google Scholar]
  5. Harb, H., Boyanov, N., Hernandez, L., Streblow, R., & Müller, D. (2016). Development and validation of grey-box models for forecasting the thermal response of occupied buildings. Energy and Buildings, 117, 199–207. [CrossRef] [Google Scholar]
  6. Khatibi, M., Rahnama, S., Vogler-Finck, P., Bendtsen, J. D., & Afshari, A. (2022). Investigating the flexibility of a novel multi-zone air heating and ventilation system using model predictive control. Journal of Building Engineering, 49(January), 104100. [CrossRef] [Google Scholar]
  7. Knudsen, M. D., & Petersen, S. (2020). Economic model predictive control of space heating and dynamic solar shading. Energy and Buildings, 209. [Google Scholar]
  8. Knudsen, Michael Dahl, & Petersen, S. (2017). Model predictive control for demand response of domestic hot water preparation in ultra-low temperature district heating systems. Energy and Buildings, 146, 55–64. [CrossRef] [Google Scholar]
  9. Kristensen, N. R., Madsen, H., & Jørgensen, S. B. (2004). Parameter estimation in stochastic grey-box models. Automatica, 40(2), 225–237. [CrossRef] [Google Scholar]
  10. Lennart, L. (1999). System identification: theory for the user. PTR Prentice Hall, Upper Saddle River, NJ, 1–14. [Google Scholar]
  11. Ljung, L. (2014). System Identification Toolbox TM User ' s Guide. December. [Google Scholar]
  12. Lofberg, J. (2004). YALMIP: A toolbox for modeling and optimization in MATLAB. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), 284–289. [CrossRef] [Google Scholar]
  13. Lofberg, J., & Gurobi Optimization, L. L. C. (2004). Gurobi optimizer reference manual. 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), 284–289. [CrossRef] [Google Scholar]
  14. Madsen, H., Bacher, P., Bauwens, G., Deconinck, A.-H., Reynders, G., Roels, S., Himpe, E., & Lethé, G. (2016). IEA EBC Annex 58-Reliable building energy performance characterisation based on full scale dynamic measurements. Report of subtask 3, part 2: Thermal performance characterisation using time series data-statistical guidelines. [Google Scholar]
  15. Norge, S. (2016). SN/TS 3031: 2016 Energy performance of buildings. In Calculation of energy needs and energy supply. [Google Scholar]
  16. Oconnell, N., Pinson, P., Madsen, H., Omalley, M., Esther, B. P., & Kumar, K. S. (2014). Benefits and challenges of electrical demand response: A critical review. Renewable and Sustainable Energy Reviews, 39, 686–699. [CrossRef] [Google Scholar]
  17. Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394–398. [CrossRef] [Google Scholar]
  18. Prívara, S., Cigler, J., Váňa, Z., Oldewurtel, F., Sagerschnig, C., & Žáčeková, E. (2013). Building modeling as a crucial part for building predictive control. Energy and Buildings, 56, 8–22. [CrossRef] [Google Scholar]
  19. Reynders, G., Diriken, J., & Saelens, D. (2014). Quality of grey-box models and identified parameters as function of the accuracy of input and observation signals. Energy and Buildings, 82, 263–274. [CrossRef] [Google Scholar]
  20. Viot, H., Sempey, A., Mora, L., Batsale, J. C., & Malvestio, J. (2018). Model predictive control of a thermally activated building system to improve energy management of an experimental building: Part I—Modeling and measurements. Energy and Buildings, 172, 94–103. [CrossRef] [Google Scholar]
  21. Vogler-Finck, P. J. C., Clauß, J., Georges, L., Sartori, I., & Wisniewski, R. (2018). Inverse Model Identification of the Thermal Dynamics of a Norwegian Zero Emission House. Cold Climate HVAC Conference, 533–543. [Google Scholar]
  22. Yu, X., Georges, L., & Imsland, L. (2021). Data pre-processing and optimization techniques for stochastic and deterministic low-order grey-box models of residential buildings. Energy and Buildings, 236, 110775. [CrossRef] [Google Scholar]
  23. Yu, X., Skeie, K. S., Knudsen, M. D., Ren, Z., Imsland, L., & Georges, L. (2022). Influence of data pre-processing and sensor dynamics on grey-box models for space-heating: Analysis using field measurements. Building and Environment, 212(October 2021), 108832. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.