Open Access
Issue
E3S Web of Conf.
Volume 365, 2023
IV International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2022)
Article Number 03028
Number of page(s) 8
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202336503028
Published online 30 January 2023
  1. Ayazuddint, S.K., Qureshi, A.A., Hayat, T.: Vibration analysis of primary inlet pipeline of pakistan research reactor-1 during steady state and transient conditions. J. Nucl. Sci. Technol. 35, (1998). https://doi.org/10.1080/18811248.1998.9733835. [Google Scholar]
  2. Ayazuddin, S.., Qureshi, A.., Hayat, T.: Vibration Analysis of Primary Inlet Pipeline of Pakistan Research Reactor-l during Steady State and Transient Conditions. J. Nucl. Sci. Technol. 35, (1998). https://doi.org/10.3327/jnst.35.148. [CrossRef] [Google Scholar]
  3. Trethewey, M.W., Friell, J.C., Chandra, M.J., Lebold, M.S.: Uncertainty evaluation of a torsional vibration Reactor Coolant Pump shaft crack monitoring system. In: Conference Proceedings of the Society for Experimental Mechanics Series (2006). [Google Scholar]
  4. Shaazizov, F.: The flow Confluence of river systems of the Pskem and Koksu river basins. In: E3S Web of Conferences (2021). https://doi.org/10.1051/e3sconf/202126403041. [Google Scholar]
  5. Shaazizov, F., Shukurov, D., Shukurov, E.: System for ensuring the detection and elimination of fires in the building of the hydroelectric power station. In: IOP Conference Series: Materials Science and Engineering (2021). https://doi.org/10.1088/1757-899X/1030/1/012142. [Google Scholar]
  6. Shaazizov, F.: Studies of turbulent flow characteristics of dividing open water streams. In: IOP Conference Series: Materials Science and Engineering (2021). https://doi.org/10.1088/1757-899X/1030/1/012141. [Google Scholar]
  7. Shaazizov, F., Shukurov, D.: Physical modeling of the filtration process through the dam base. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/869/7/072037. [Google Scholar]
  8. Shaazizov, F., Badalov, A., Shukurov, D., Yulchiev, D.: Hydraulic elevator for cleaning sediment of a water outlet of a reservoir. In: IOP Conference Series: Materials Science and Engineering (2020). https://doi.org/10.1088/1757-899X/883/1/012018. [Google Scholar]
  9. Shaazizov, F.: Assessment of damage during the formation and passage of mudflows in the Tashkent region. In: E3S Web of Conferences (2021). https://doi.org/10.1051/e3sconf/202126403042. [Google Scholar]
  10. Liu, J., Gao, F.P.: Viv hysteresis effect on the allowable span length of submarine pipelines. In: Proceedings of the International Offshore and Polar Engineering Conference (2020). [Google Scholar]
  11. Helian, B., Chen, Z., Yao, B.: Energy-saving and accurate motion control of a hydraulic actuator with uncertain negative loads. Chinese J. Aeronaut. 34, (2021). https://doi.org/10.1016/j.cja.2020.12.025. [Google Scholar]
  12. Birajdar, R., Keste, A.: Prediction of Flow-Induced Vibrations due to Impeller Hydraulic Unbalance in Vertical Turbine Pumps Using One-Way Fluid−Structure Interaction. J. Vib. Eng. Technol. 8, (2020). https://doi.org/10.1007/s42417-019-00174-5. [CrossRef] [Google Scholar]
  13. Arun Shankar, V.K., Subramaniam, U., Padmanaban, S., Holm-Nielsen, J.B., Blaabjerg, F., Paramasivam, S.: Experimental investigation of power signatures for cavitation and water hammer in an industrial parallel pumping system. Energies. 12, (2019). https://doi.org/10.3390/en12071351. [Google Scholar]
  14. Zhang, S., Tian, R., DIng, K., Chen, H., Ma, Z.: Numerical and experimental study in pressure pulsation and vibration of a two-stage centrifugal pump under cavitating condition. Mod. Phys. Lett. B. 36, (2022). https://doi.org/10.1142/S0217984921505011. [Google Scholar]
  15. Tse, Y.L., Cholette, M.E., Tse, P.W.: A multi-sensor approach to remaining useful life estimation for a slurry pump. Meas. J. Int. Meas. Confed. 139, (2019). https://doi.org/10.1016/j.measurement.2019.02.079. [Google Scholar]
  16. Schröders, S., Fidlin, A.: Asymptotic analysis of self-excited and forced vibrations of a self-regulating pressure control valve. Nonlinear Dyn. 103, (2021). https://doi.org/10.1007/s11071-021-06241-5. [Google Scholar]
  17. Birajdar, R.S., Keste, A.A., Gawande, S.H.: Critical Hydraulic Eccentricity Estimation in Vertical Turbine Pump Impeller to Control Vibration. Int. J. Rotating Mach. 2021, (2021). https://doi.org/10.1155/2021/6643282. [Google Scholar]
  18. Reges, G., Fontana, M., Ribeiro, M., Silva, T., Abreu, O., Reis, R., Schnitman, L.: Electric submersible pump vibration analysis under several operational conditions for vibration fault differential diagnosis. Ocean Eng. 219, (2021). https://doi.org/10.1016/j.oceaneng.2020.108249. [CrossRef] [Google Scholar]
  19. Reges, G., Fontana, M., Costa, E., Lima, A., Ribeiro, M., Schnitman, L.: A new method for the vibration amplitude assessment of the ESP systems considering the vibration orbit. J. Pet. Sci. Eng. 211, (2022). https://doi.org/10.1016/j.petrol.2022.110214. [CrossRef] [Google Scholar]
  20. Rodriguez, C.G., Mateos-Prieto, B., Egusquiza, E.: Monitoring of rotor-stator interaction in pump-turbine using vibrations measured with on-board sensors rotating with shaft. Shock Vib. 2014, (2014). https://doi.org/10.1155/2014/276796. [Google Scholar]
  21. Tan, M., Lu, Y., Wu, X., Liu, H., Tian, X.: Investigation on performance of a centrifugal pump with multi-malfunction. J. Low Freq. Noise Vib. Act. Control. 40, (2021). https://doi.org/10.1177/1461348420942349. [Google Scholar]
  22. Černetič, J., Čudina, M.: Estimating uncertainty of measurements for cavitation detection in a centrifugal pump. Meas. J. Int. Meas. Confed. 44, (2011). https://doi.org/10.1016/j.measurement.2011.03.023. [Google Scholar]
  23. Bianchini, A., Pellegrini, M., Rossi, J.: Maintenance scheduling optimization for industrial centrifugal pumps. Int. J. Syst. Assur. Eng. Manag. 10, (2019). https://doi.org/10.1007/s13198-019-00819-4. [Google Scholar]
  24. Kotb, A., Abdulaziz, A.M.: Cavitation Detection in Variable Speed Pump by Analyzing the Acoustic and Vibration Spectrums. Engineering. 07, (2015). https://doi.org/10.4236/eng.2015.710062. [Google Scholar]
  25. Grosel, J., Pakos, W., Sawicki, W.: Experimental measurements as the basis for determination of the source of pumps' excessive vibration. In: Procedia Engineering (2015). https://doi.org/10.1016/j.proeng.2015.07.088. [Google Scholar]
  26. Barzdaitis, V., Mažeika, P., Vasylius, M., Kartašovas, V., Tadžijevas, A.: Investigation of pressure pulsations in centrifugal pump system. J. Vibroengineering. 18, (2016). https://doi.org/10.21595/jve.2016.15883. [Google Scholar]
  27. Vasilyev, A.: Experimental research and reduction of vibration of pumps plants. Akustika. 39, (2021). https://doi.org/10.36336/akustika202139205. [Google Scholar]
  28. Mousmoulis, G., Karlsen-Davies, N., Aggidis, G., Anagnostopoulos, I., Papantonis, D.: Experimental analysis of cavitation in a centrifugal pump using acoustic emission, vibration measurements and flow visualization. Eur. J. Mech. B/Fluids. 75, (2019). https://doi.org/10.1016/j.euromechflu.2018.10.015. [Google Scholar]
  29. Son, K.S., Jeon, H.S., Chae, G.S., Park, J.S., Kim, S.O.: A fast high-resolution vibration measurement method based on vision technology for structures. Nucl. Eng. Technol. 53, (2021). https://doi.org/10.1016/j.net.2020.06.019. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.