Open Access
Issue
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
Article Number 01011
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202336601011
Published online 27 January 2023
  1. Bailey, D.L., et al., eds. Positron Emission Tomography. Basic Sciences. 2005, Springer. [Google Scholar]
  2. Fernø, M.A., et al., Combined positron emission tomography and computed tomography to visualize and quantify fluid flow in sedimentary rocks. Water Resources Research, 2015. [Google Scholar]
  3. Zahasky, C. and S.M. Benson, Micro-positron emission tomography for measuring sub-core scale single and multiphase transport parameters in porous media. Advances in Water Resources, 2018. 115: p. 116. [CrossRef] [Google Scholar]
  4. Krevor, S.C.M., et al., Capillary heterogeneity trapping of CO2 in a sandstone rock at reservoir conditions. Geophysical Research Letters, 2011. 38(15): p. L15401. [CrossRef] [Google Scholar]
  5. Krevor, S.C.M., et al., Relative permeability and trapping of CO2 and water in sandstone rocks at reservoir conditions. Water Resources Research, 2012. 48(2): p. W02532. [CrossRef] [Google Scholar]
  6. Pini, R., S.C.M. Krevor, and S.M. Benson, Capillary pressure and heterogeneity for the CO2/water system in sandstone rocks at reservoir conditions. Advances in Water Resources, 2012. 38(0): p. 48-59. [CrossRef] [Google Scholar]
  7. Pini, R., et al., Quantifying solute spreading and mixing in reservoir rocks using 3-D PET imaging. J. Fluid Mech., 2016. 796: p. 558-589. [CrossRef] [Google Scholar]
  8. Brattekås, B., et al., New Insight to Wormhole Formation in Polymer Gel during Water Chasefloods using Positron Emission Tomography (PET), in SPE Bergen One Day Seminar. 2016: Bergen, Norway. [Google Scholar]
  9. Dechsiri, C., et al., Positron emission tomography applied to fluidization engineering. Can J Chem Eng, 2005. 83(1): p. 88-96. [Google Scholar]
  10. Brattekås, B., et al., Foam Flow and Mobility Control in Natural Fracture Networks. Transport in Porous Media, 2020. 131(1): p. 157-174. [CrossRef] [Google Scholar]
  11. Khalili, A., A.J. Basu, and U. Pietrzyk, Flow visualization in porous media via Positron Emission Tomography. Phys Fluids, 1998. 10(4): p. 1031-1033. [CrossRef] [Google Scholar]
  12. Kulenkampff, J., et al., Evaluation of positronemission-tomography for visualization of migration processes in geomaterials. Phys Chem Earth, 2008. 33((14-16)): p. 937-942. [CrossRef] [Google Scholar]
  13. Maucec, M., et al., Imaging of Fluid Mobility in Fractured Cores Using Time-lapse Positron Emission Tomography, in SPE Annual Technical Conference and Exhibition. 2013, Society of Petroleum Engineers: New Orleans, LA, USA. [Google Scholar]
  14. Maguire, R.P., et al., Positron emission tomography of large rock samples using a multiring PET instrument. Ieee T Nucl Sci, 1997. 44(1): p. 26-30. [CrossRef] [Google Scholar]
  15. Degueldre, C., et al., Porosity and pathway determination in crystalline rock by positron emission tomography and neutron radiography. Earth Planet Sc Lett, 1996. 140((1-4)): p. 213-225. [CrossRef] [Google Scholar]
  16. Emery, G.T., Perturbation of Nuclear Decay Rates. Annual Review of Nuclear Science, 1972. 22(1): p. 165-202. [CrossRef] [Google Scholar]
  17. Haugan, A. A Low-Cost PET System for Use in Flow Experiments of Porous Media. in SPE Annual Technical Conference and Exhibition. 2000. Dallas, Texas. [Google Scholar]
  18. Kulenkampff’, J., et al., Evaluation of positronemission-tomography for visualisation of migration processes in geomaterials. Physics and Chemistry of the Earth, 2008. 33(14-16): p. 937-942. [CrossRef] [Google Scholar]
  19. Richter, M., et al., Positron emission tomography for modelling of geochemical transport processes in clay. Radiochimica Acta, 2005. 93: p. 643-651. [CrossRef] [Google Scholar]
  20. Gründig, M., et al., Tomographic radiotracer studies of the spatial distribution of heterogeneous geochemical transport processes. Applied Geochemistry, 2007. 11: p. 2334-2343. [CrossRef] [Google Scholar]
  21. Zahasky, C., et al., Positron emission tomography in water resources and subsurface energy resources engineering research. Advances in Water Resources, 2019. 127(May 2019): p. 39-52. [CrossRef] [Google Scholar]
  22. Rohren, E.M., T.G. Turkington, and R.E. Coleman, Clinical Applications of PET in Oncology. Radiology, 2004. 231(2): p. 305-332. [CrossRef] [PubMed] [Google Scholar]
  23. Anand, S.S., H. Singh, and A.K. Dash, Clinical Applications of PET and PET-CT. Medical journal, Armed Forces India, 2009. 65(4): p. 353-358. [CrossRef] [PubMed] [Google Scholar]
  24. Bailey, D.L., et al., Positron Emission Tomography, ed. M.N. Maisley. 2005: Springer. [CrossRef] [Google Scholar]
  25. Fernø, M.A., et al., Flow visualization of CO2 in tight shale formations at reservoir conditions. Geophysical Research Letters, 2015. 42: p. 7414-7419. [CrossRef] [Google Scholar]
  26. Brattekås, B., et al., Unlocking multimodal PET-MR synergies for geoscience. Advances in Water Resources, 2020. 142: p. 103641. [CrossRef] [Google Scholar]
  27. Agency, T.I.A.E. https://nucleus.iaea.org/sites/accelerators/Pages/Cyclotron.aspx. 2020. [Google Scholar]
  28. Fernø, M.A., et al., Quick and Affordable SCAL: Spontaneous Core Analysis, in the International Symposium of the Society of Core Analysts. 2015: St.John’s, Newfoundland&Labrador, Canada. [Google Scholar]
  29. Fernø, M.A., et al., Spontaneous Imbibition Revisited: A New Method to Determine Relative Permeability and Capillary Pressure by Inclusion of the Capillary Backpressure, in EAGE 18th European Symposium on Improved Oil Recovery. 2015: Dresden, Germany. [Google Scholar]
  30. Ruth, D., et al. Matching Experimental Saturation Profiles by Numerical Simulation of Combined Co-/Counter-Current Spontaneous Imbibition. in International Symposium of the Society of Core Analysts. 2016. Snowmass, CO, USA. [Google Scholar]
  31. Brattekås, B. and R.S. Seright, Implications for improved polymer gel conformance control during low-salinity chase-floods in fractured carbonates. Journal of Petroleum Science and Engineering, 2018. 163: p. 661-670. [CrossRef] [Google Scholar]
  32. Brattekås, B., et al., New Insight Into Wormhole Formation in Polymer Gel During Water Chase Floods With Positron Emission Tomography. SPE Journal, 2017. 22(01): p. 32-40. [CrossRef] [Google Scholar]
  33. Føyen, T.L., M.A. Fernø, and B. Brattekås, The Effects of Nonuniform Wettability and Heterogeneity on Induction Time and Onset of Spontaneous Imbibition. SPE Journal, 2019. 24(03): p. 1192-1200. [CrossRef] [Google Scholar]
  34. Pini, R. and S.M. Benson, Simultaneous determination of capillary pressure and relative permeability curves from core-flooding experiments with various fluid pairs. Water resources research, 2013. 49(6): p. 3516-3530. [CrossRef] [Google Scholar]
  35. Zahasky, C. and S.M. Benson. Phase saturation validation and tracer transport quantification using microPET in a heterogeneous sandstone core. in International Symposium of the Society of Core Analysts. 2016. Snow Mass, Colorado, USA: Society of Core Analysts. [Google Scholar]
  36. Zahasky, C. and S.M. Benson, Using micro-positron emission tomography to quantify single and multiphase flow in heterogeneous reservoirs. Energy Procedia, 2017. 114: p. 5070-5082. [CrossRef] [Google Scholar]
  37. Brattekås, B. and M. Haugen, Explicit tracking of CO2-flow at the core scale using micro-Positron Emission Tomography. Journal of Natural Gas Science and Engineering, 2020. 77. [Google Scholar]
  38. Zahasky, C. and S.M. Benson, Spatial and temporal quanitification of spontaneous imbibition. Geophysical Research Letters, 2019. [Google Scholar]
  39. Sandnes, M.F., Wetting Stability of Aged Limestone in the Presence of HPAM Polymer, in Department of Physics and Technology. 2020, University of Bergen: Bergen Open Research Archive. [Google Scholar]
  40. Brattekås, B. and M.A. Fernø, New Insight from Visualization of Mobility Control for Enhanced Oil Recovery Using Polymer Gels and Foams, in Chemical Enhanced Oil Recovery (cEOR) a Practical Overview, L. Romero-Zèron, Editor. 2016, InTech. [Google Scholar]
  41. Brattekås, B. and R.S. Seright, Implications for improved polymer gel conformance control during low-salinity chase-floods in fractured carbonates. Journal of Petroleum Science and Engineering, 2017. [Google Scholar]
  42. Brattekås, B. and R. Seright, The Mechanism for Improved Polymer Gel Blocking During Low-Salinity Waterfloods, Investigated Using Positron Emission Tomography Imaging. Transport in Porous Media, 2020. 133(1): p. 119-138. [CrossRef] [Google Scholar]
  43. Brattekås, B., et al., Fracture Mobility Control by Polymer GelIntegrated EOR in Fractured, Oil-Wet Carbonate Rocks, in EAGE Annual Conference & Exhibition incorporating SPE Europec. 2013: London, UK. [Google Scholar]
  44. Busch, A. and N. Müller, Determining CO2 /brine relative permeability and capillary threshold pressures for reservoir rocks and caprocks: Recommendations for development of standard laboratory protocols. Energy Procedia, 2011. 4: p. 6053-6060. [CrossRef] [Google Scholar]
  45. Iglauer, S., C.H. Pentland, and A. Busch, CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resources Research, 2015. 51(1): p. 729-774. [CrossRef] [Google Scholar]
  46. Menke, H.P., et al., Dynamic Three-Dimensional Pore-Scale Imaging of Reaction in a Carbonate at Reservoir conditions. Environmental science & technology, 2015. 49: p. 4407-4414. [CrossRef] [PubMed] [Google Scholar]
  47. Ott, H., et al., Core-flood experiment for transport of reactive fluids in rocks. Review of Scientific Instruments, 2012. 83(8): p. 084501. [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.