Open Access
Issue
E3S Web Conf.
Volume 366, 2023
The 2021 International Symposium of the Society of Core Analysts (SCA 2021)
Article Number 01017
Number of page(s) 8
DOI https://doi.org/10.1051/e3sconf/202336601017
Published online 27 January 2023
  1. S. Pasquier, M. Quintard and Y. Davit, “Modeling Two-Phase Flow of Immiscible Fluids in Porous: Bukeley Leverett Theory with Explicit Coupling Terms,” Physical Review Fluids, vol. 2, no. 10, (2017). [CrossRef] [Google Scholar]
  2. “OpenFOAM,” 2019. [Online]. Available: https://openfoam.org/. [Google Scholar]
  3. F. Moukalled, L. Mangani, and M. Darwish The Finite Volume Method in Computational Fluid Dynamics, Springer, (2016), p. 129. [Google Scholar]
  4. S. S. Deshpande, L. Anumolu and M. F. Trujillo, “Evaluating the Performance of the Two-Phase Flow Solver in InterFoam,” Computationl Science and Discovery, (2012). [Google Scholar]
  5. M. Aboukhader, A. Georgoulas, M. Marengo, M. Gavaises and K. Vogiatzaki, “Simulation of MicroFlow Dynamics at Low Capillary Numbers Using Adaptive Interface Compression,” Computers and Fluids, vol. 165, pp. 13-32, (2018). [CrossRef] [Google Scholar]
  6. M. Gad-El-Hak, “The Fluid Mechanics of Microdevices—the Freeman Scholar Lecture,” J. Fluids Eng. Trans. ASME, vol. 121, no. 1, pp. 5–33, (1999). [CrossRef] [Google Scholar]
  7. J. U. Brackbill, D. B. Kothe and C. Zemach, “A Continuum Method for Modeling Surface Tesion,” Computational Physics, vol. 100, pp. 335-354, (1992). [CrossRef] [Google Scholar]
  8. S. M. Damian, PhD Thesis: An Extended Mixture Model for the Simultaneous Treatment of Short and Long Term Scale, (2013). [Google Scholar]
  9. T. Holzman, Mathematics, Numerics, Derivations and OpenFOAM, (2016). [Google Scholar]
  10. H. Rusche, Computational Fluid Dynamics of Dispersed Two Phase Flow at High Phase Fractions, University of LONDON, (2002). [Google Scholar]
  11. R. Lenormand and E. Touboul, “Numerical Models and Experiments on Immiscible Displacements in Porous Media,” Journal of Fluid Mechanics, vol. 189, pp. 165187, (1988). [CrossRef] [Google Scholar]
  12. M. Mahmoodi, L. A. James and T. Johansen, “Automated Advanced Image Processing for Micromodel Flow Experiments: An application Using LabView,” Journal of Petroleum Science and Engineering, no. 167, pp. 829-843, (2018). [CrossRef] [Google Scholar]
  13. S. Mahdavi and L.A. James, “Micro and Macro Analysis of Carbonated Water Injection (CWI) in Homogeneous and Heterogeneous Porous Media,” Fuel, vol. 257, no. June, p. 115916, (2019). [CrossRef] [Google Scholar]
  14. P. Nguyen, H. Fadaei, and D. Sinton, “Pore-scale Assessment of Nanoparticle-Stabilized CO2 Foam for Enhanced Oil Recovery,” Energy and Fuels, vol. 28, no. 10, pp. 6221–6227, (2014). [CrossRef] [Google Scholar]
  15. H. Khorshidian, L. A. James, and S. D. Butt, “PoreLevel Investigation of the Influence of Wettability and Production Rate on the Recovery of Waterflood Residual Oil with a Gas Assisted Gravity Drainage Process,” Energy and Fuels, vol. 32, no. 6, pp. 6438–6451, (2018). [CrossRef] [Google Scholar]
  16. F. Guo and S. A. Aryana, “An Experimental Investigation of Flow Regimes in Imbibition and Drainage Using a Microfluidic Platform,” Energies, vol. 12, pp. 1-13, April (2019). [Google Scholar]
  17. A. Q. Raeini, B. Bijeljic, and M. J. Blunt, “Numerical Modelling of Sub-pore Scale Events in Two-Phase Flow Through Porous Media,” Transport in Porous Media, vol. 101, no. 2, pp. 191–213, (2014). [CrossRef] [Google Scholar]
  18. S. Berg et al., “Modelling of Imbibition Relative Permeability by Direct Quasi-Static Approach,” Internatioal Symposium of the Society of Core Analysts, pp. 1–12, (2016). [Google Scholar]
  19. I. Chatzis and F. A. Dullien, “Dynamic Immiscible Displacement Mechanisms in Pore Doublets: Theory Versus Experiments,” Journal of Colloid and Interface Science, pp. 199-222, January (1983). [CrossRef] [Google Scholar]
  20. C. Geuzaine and J. F. Remacle, “Gmsh: a Three Dimensional Finite Element Mesh Generator with Built-in Preand Post-Processing Facilities,” International Journal for Numerical Methods in Engineering, vol. 79, no. 11, pp. 1309-1331, (2009). [CrossRef] [Google Scholar]
  21. J. Bear, Dynamics of Fluids in Porous Media, New Yourk: Elsevier, (1972). [Google Scholar]
  22. A. Goebel and K. Lunkenheimer, “Interfacial Tension of Water/n-Alkane Interface,” Langmuir, vol. 13, pp. 396-372, (1997). [Google Scholar]
  23. National Center for Biotechnology Information. PubChem Database. Decane CID=15600, “https://pubchem.ncbi.nlm.nih.gov/compound/Decane,” [Online]. [Accessed July 2019]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.