Open Access
Issue |
E3S Web of Conf.
Volume 465, 2023
8th International Conference on Industrial, Mechanical, Electrical and Chemical Engineering (ICIMECE 2023)
|
|
---|---|---|
Article Number | 01029 | |
Number of page(s) | 5 | |
Section | Symposium on Mechanical, Chemical, and Advanced Materials Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202346501029 | |
Published online | 18 December 2023 |
- D. K. Rajak, D. D. Pagar, P. L. Menezes, and E. Linul, “Fiber-Reinforced Polymer Composites :,” MDPI, vol. 11, no. 10, 2019, [Online]. Available: https://www.mdpi.com/2073-4360/11/10/1667 [Google Scholar]
- S. V. N. B. Prasad, G. A. Kumar, K. V. P. Sai, and B. Nagarjuna, “Design and optimization of natural fibre reinforced epoxy composites for automobile application Design and Optimization of Natural Fibre Reinforced Epoxy Composites for Automobile Application,” vol. 020016, no. July, 2019. [Google Scholar]
- S. Kumar and A. Saha, “Graphene nanoplatelets/organic wood dust hybrid composites: physical, mechanical and thermal characterization,” Iran. Polym. J. (English Ed., vol. 30, no. 9, pp. 935–951, 2021, doi:10.1007/s13726-021-00946-5. [CrossRef] [Google Scholar]
- S. Hasan et al., “Climate resilient products development through valorization of Eichhornia crassipes to biofuel and biochar,” Int. J. Environ. Sci. Technol., vol. 19, no. 8, pp. 7617–7624, 2022, doi: 10.1007/s13762-021-03523-8. [CrossRef] [Google Scholar]
- S. Rezania, M. Ponraj, M. F. M. Din, A. R. Songip, F. M. Sairan, and S. Chelliapan, “The diverse applications of water hyacinth with main focus on sustainable energy and production for new era: An overview,” Renew. Sustain. Energy Rev., vol. 41, pp. 943–954, 2015, doi: 10.1016/j.rser.2014.09.006. [CrossRef] [Google Scholar]
- M. Y. Khalid, A. Al Rashid, Z. U. Arif, W. Ahmed, H. Arshad, and A. A. Zaidi, “Natural fiber reinforced composites: Sustainable materials for emerging applications,” Results Eng., vol. 11, no. July, p. 100263, 2021, doi: 10.1016/j.rineng.2021.100263. [CrossRef] [Google Scholar]
- A. E. A. El-Wakil, M. Abd-Elbasseer, and T. M.El-Basheer, “Mechanical and acoustical properties of Eichhornia crassipes (water hyacinth) fiber-reinforced styrene butadiene rubber,” Polym. Compos., vol. 42, no. 8, pp. 3732–3745, 2021, doi: 10.1002/pc.26088. [CrossRef] [Google Scholar]
- R. B. and S. K. Patrycja Bazan *, Dariusz Mierzwi ´nski, “Bio-Based Polyethylene Composites with Natural,” Materials (Basel)., vol. 13, 2020, doi: 10.3390/ma13112595. [Google Scholar]
- H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, “A review on the tensile properties of natural fiber reinforced polymer composites,” Compos. Part B Eng., vol. 42, no. 4, pp. 856–873, 2011, doi: 10.1016/j.compositesb.2011.01.010. [CrossRef] [Google Scholar]
- P. Khankham, W. Nhuapeng, and W. Thamjaree, “Fabrication and Mechanical Properties of the Biocomposites between Water Hyacinth Fiber and Paper Mulberry,” vol. 757, pp. 73–77, 2017, doi: 10.4028/www.scientific.net/KEM.757.73. [Google Scholar]
- L. G. F. Mendoza and W. M. G. Co, “Production of Thermal Wall Insulation from Water Hyacinth (Eichhornia cressipes) and Cogon Grass (Imperata cylindrica),” 2019 9th IEEE Integr. STEM Educ. Conf. ISEC 2019, pp. 18–19, 2019, doi: 10.1109/ISECon.2019.8881985. [Google Scholar]
- C. Juárez, A. Durán, P. Valdez, and G. Fajardo, “Performance of ‘Agave lecheguilla’ natural fiber in portland cement composites exposed to severe environment conditions,” Build. Environ., vol. 42, no. 3, pp. 1151–1157, 2007, doi: 10.1016/j.buildenv.2005.12.005. [CrossRef] [Google Scholar]
- Y. Xie, C. A. S. Hill, Z. Xiao, H. Militz, and C. Mai, “Composites : Part A Silane coupling agents used for natural fiber / polymer composites : A review,” Compos. Part A, vol. 41, no. 7, pp. 806–819, 2010, doi:10.1016/j.compositesa.2010.03.005. [CrossRef] [Google Scholar]
- G. C. Lenhani et al., “Application of Corn Fibers from Harvest Residues in Biocomposite Films,” J. Polym. Environ., vol. 29, no. 9, pp. 2813–2824, 2021, doi: 10.1007/s10924-021-02078-6. [CrossRef] [Google Scholar]
- W. P. Raharjo, W. W. Raharjo, and B. Kusharjanta, “Characterization of Calcium Hydroxide-treated Zalacca Fibers for Improving Properties as Reinforcement for Composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1096, no. 1, p.012036, 2021, doi: 10.1088/1757-899x/1096/1/012036. [Google Scholar]
- H. T. & R. N. S. Ochi, “Mechanical Properties Of Heat-treated Natural Fibers,” vol. 59, p. 2, 2002, doi: 10.2495/HPS020121. [Google Scholar]
- S. Kalia, B. S. Kaith, and I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites-areview,” Polym. Eng. Sci., vol. 49, no. 7, pp. 1253–1272, 2009, doi: 10.1002/pen.21328. [CrossRef] [Google Scholar]
- P. T. D. L. Carada, T. Fujii, and K. Okubo, “Effects of heat treatment on the mechanical properties of kenaf fiber,” AIP Conf. Proc., vol. 1736, no. 2016, 2016, doi: 10.1063/1.4949604. [Google Scholar]
- M. B. Amy Langhorst, Mohammad Ravandi, Debbie Mielewski, “S0926669021005963.pdf.” doi: https://doi.org/10.1016/j.indcrop.2021.113832. [Google Scholar]
- J. Cui et al., “Effects of Thermal Treatment on the Mechanical Properties of Bamboo Fiber Bundles,” Materials (Basel)., vol. 16, no. 3, 2023, doi: 10.3390/ma16031239. [Google Scholar]
- T. Jirawattanasomkul, S. Likitlersuang, N. Wuttiwannasak, T. Ueda, D. Zhang, and T. Voravutvityaruk, “Effects of Heat Treatment on Mechanical Properties of Jute Fiber–Reinforced Polymer Composites for Concrete Confinement,” J. Mater. Civ. Eng., vol. 32, no. 12, 2020, doi: 10.1061/(asce)mt.1943-5533.0003456. [CrossRef] [Google Scholar]
- N. Asyiqin and M. Nasharudin, “Journal of Materials Exploration and Findings ( JMEF ) The Effect of Heat Treatment and Chemical Treatment on Natural Fibre to The Durability of Wood Plastic Composites – A Review,” vol. 2, no. 2, 2023, doi: 10.7454/jmef.v2i2.1023. [Google Scholar]
- Y. Cao, S. Sakamoto, and K. Goda, “Effects of heat and alkali treatments on mechanical properties of kenaf fibers,” ICCM Int. Conf. Compos. Mater., pp. 1–4, 2007. [Google Scholar]
- B. M. Esteves and H. M. Pereira, “Wood modification by heat treatment: A review,” BioResources, vol. 4, no. 1, pp. 370–404, 2009, doi: 10.15376/biores.4.1.esteves. [Google Scholar]
- A. Shahzad, “Effects of fibre surface treatments on mechanical properties of hemp fibre composites,” Compos. Interfaces, vol. 18, no. 9, pp. 737–754, 2011, doi: 10.1163/156855412X629583. [Google Scholar]
- V. B. Gupta, “Heat setting,” J. Appl. Polym. Sci., vol. 83, no. 3, pp. 586–609, 2001, doi: 10.1002/app.2260. [Google Scholar]
- A. Kaboorani, “Thermal properties of composites made of heat-treated wood and polypropylene,” J. Compos. Mater., vol. 43, no. 22, pp. 2599–2607, 2009, doi: 10.1177/0021998309345291. [CrossRef] [Google Scholar]
- S. Kaewkuk, W. Sutapun, and K. Jarukumjorn, “Effect of heat treated sisal fiber on physical properties of polypropylene composites,” Adv. Mater. Res., vol. 123–125, pp. 1123–1126, 2010, doi: 10.4028/www.scientific.net/AMR.123-125.1123. [CrossRef] [Google Scholar]
- D. Ariawan, Z. A. Mohd Ishak, R. Mat Taib, M. Z. Ahmad Thirmizir, and Y. J. Phua, “Effect of Heat Treatment on Properties of Kenaf Fiber Mat/Unsaturated Polyester Composite Produced by Resin Transfer Molding,” Appl. Mech. Mater., vol. 699, pp. 118–123, 2014, doi: 10.4028/www.scientific.net/amm.699.118. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.