Open Access
Issue |
E3S Web of Conf.
Volume 374, 2023
The 3rd International Conference on Natural Resources and Life Sciences (NRLS) 2020
|
|
---|---|---|
Article Number | 00035 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202337400035 | |
Published online | 21 March 2023 |
- N.D. Kaushika, K.S. Reddy, K. Kaushik. Springer Cham. (2016). p. 1–15. https://doi.org/10.1007/978-3-319-29446-9_1 [Google Scholar]
- N. Khan, M.D. Khan, A.S. Nizami, M. Rehan, A. Shaida, A. Ahmad, et al. RSC Adv. 8, 37:20726–20736(2018). https://scholar.google.co.id/scholar?hl=id≈sdt=0%2C5&q=Energy+generation+through+bioelectrochemical+degradation+of+pentachlorophenol+in+microbial+fuel+cell&btnG= [CrossRef] [PubMed] [Google Scholar]
- N. Yasri, E.P.L. Roberts, S. Gunasekaran. Energy Rep. 5:1116–1136(2019). https://doi.org/10.1016/j.egyr.2019.08.007 [CrossRef] [Google Scholar]
- S. Bajracharya, M. Sharma, G. Mohanakrishna, X.D. Benneton, D.P.B.T.B. Strik, P.M. Sarma, et al. Renew. Energy. 98: 153–170(2016). https://doi.org/10.1016/j.renene.2016.03.002 [CrossRef] [Google Scholar]
- K. Rabaey, R.A. Rozendal. Nat. Rev. Microbiol. 8,10:706–716(2010). http://doi.org/10.1038/nrmicro2422 [CrossRef] [PubMed] [Google Scholar]
- M.A. Rosenbaum, A.W. Henrich. Curr. Opin. Biotechnol. 29: 93–98(2014). https://doi.org/10.1016/j.copbio.2014.03.003 [CrossRef] [Google Scholar]
- M. Rahimnejad, A. Adhami, S. Darvari, A. Zirepour, S–E. Oh. Alex. Eng. J. 54,3: 745–756(2015). https://doi.org/10.1016/j.aej.2015.03.031 [CrossRef] [Google Scholar]
- K. Watanabe, M. Manefield, M. Lee, A. Kouzuma. Curr. Opin. Biotechnol. 20,6: 633–641(2009). https://doi.org/10.1016/j.copbio.2009.09.006 [CrossRef] [Google Scholar]
- D. Pant, A. Singh, G. Van Bogaert, S.I. Olsen, P.S. Nigam, L. Diels et al. RSC Adv. 2,4: 1248–1263(2012). https://scholar.google.co.id/scholar?hl=id≈sdt=0%2C5&q=Bioelectrochemical+systems+%28BES%29+for+sustainable+energy+production+and+product+recovery+from+organic+wastes+and+industrial+wastewaters&btnG= [CrossRef] [Google Scholar]
- K. Rabaey, W. Verstraete. Trends Biotechnol. 23,6:291–298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008 [CrossRef] [PubMed] [Google Scholar]
- A. Venkataraman, M.A. Rosenbaum, S.D. Perkins, J.J. Werner, L.T. Angenent. Energy Environ. Sci. 4,11: 4550–4559(2011). https://www.researchgate.net/profile/Largus_Angenent/publication/224954001_Metabolite-based_mutualism_between_Pseudomonas_aeruginosa_PA14_and_Enterobacter_aerogenes_enhances_current_generation_in_bioelectrochemical_systems/links/57509a9c08aef67d0d89fe4e.pdf [CrossRef] [Google Scholar]
- S. Schmitz, S. Nies, N. Wierckx, L.M. Blank, M.A. Rosenbaum. Front. Microbiol. 6,284: 1–13(2015). https://doi.org/10.3389/fmicb.2015.00284 [CrossRef] [Google Scholar]
- D. Pant, G. Van Bogaert, L. Diels, K. Vanbroekhoven. Bioresour. Technol. 101,6: 1533–1543(2010). https://doi.org/10.1016/j.biortech.2009.10.017 [CrossRef] [Google Scholar]
- J. Chouler, M. Di Lorenzo. Water Sci. Technol. 79,12:2231–2241(2019). https://doi.org/10.2166/wst.2019.207 [CrossRef] [PubMed] [Google Scholar]
- J. Mateo–Sagasta, S. Marjani Zadeh, H. Turral. Water pollution from agriculture: a global review. J. Burke (eds). Rome and Colombo: FAO (2017). p. 1–29. https://books.google.co.id/books?hl=id&id=edo9DwAAQBAJ&oi=fnd&pg=PA1&dq=Water+pollution+from+agriculture:+a+global+review.&ots=mUsONGxD02&sig=IqAf8oIvOfCP8LkL1Ap1K18kefs&redir_esc=y#v=onepage&q=Water%20pollution%20from%20agriculture%3A%20a%20global%20review.&f=false [Google Scholar]
- O. Autin, J. Hart, P. Jarvis, J. MacAdam, S.A. Parsons, B. Jefferson. Water Res. 46,17:5655–5662(2012). https://doi.org/10.1016/j.watres.2012.07.057 [CrossRef] [PubMed] [Google Scholar]
- M. Sillanpää, M. Shestakova. Electrochemical Water Treatment Methods (2017). p. 1–46. https://doi.org/10.1016/B978-0-12-811462-9.00001-3 [Google Scholar]
- H. Marsh, F. Rodríguez–Reinoso. Activated Carbon. 1st ed. India: Elsevier Science & Technology Books. (2006). p. 1–506. https://books.google.co.id/books?hl=en&id=UaOXSk2vFVQC&oi=fnd&pg=PP1&dq=Marsh,+H.,+Rodr%C3%ADguez%E2%80%93Reinoso,+F.,+(2006).+Activated+Carbon&ots=QxVcdRIvRr&sig=uf6DdG80VzkqsUFNdjfvmR7lL-o&redir_esc=y#v=onepage&q=Marsh%2C%20H.%2C%20Rodr%C3%ADguez%E2%80%93Reinoso%2C%20F.%2C%20(2006).%20Activated%20Carbon&f=false [Google Scholar]
- R. Busquets, O.P. Kozynchenko, R.L.D. Whitby, S.R. Tennison, A.B. Cundy. Water Res. 61: 46–56(2014). https://doi.org/10.1016/j.watres.2014.04.048 [CrossRef] [PubMed] [Google Scholar]
- D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner. Water Res. 139: 118–131(2018). https://doi.org/10.1016/j.watres.2018.03.042 [CrossRef] [PubMed] [Google Scholar]
- A. Tufail, W.E. Price, F.I. Hai. Chemosphere 260: 127460(2020). https://doi.org/10.1016/j.chemosphere.2020.127460 [CrossRef] [PubMed] [Google Scholar]
- A. Marican, E.F. Durán–lara. Environ. Sci. Pollut. Res. 25: 2051–2064(2018). https://doi.org/10.1007/s11356–017–0796–2 or https://www.researchgate.net/profile/Esteban_Duran-Lara/publication/321339657_A_review_on_pesticide_removal_through_different_processes/links/5a870054aca272017e5a7c01/A-review-on-pesticide-removal-through-different-processes.pdf [CrossRef] [PubMed] [Google Scholar]
- W.K. Lafi, Z. Al–Qodah. J. Hazard. Mater. 137,1:489–497(2006). https://doi.org/10.1016/j.jhazmat.2006.02.027 [Google Scholar]
- F. Harnisch, F. Aulenta, U. Schröder. Comprehensive Biotechnology 2nd ed. 6,49:643–659(2011). https://doi.org/10.1016/B978-0-08-088504-9.00462-1 [CrossRef] [Google Scholar]
- Y. Zhang, I. Angelidaki. Water Res. 56: 11–25(2014). https://doi.org/10.1016/j.watres.2014.02.031 [CrossRef] [PubMed] [Google Scholar]
- D. Cecconet, F. Sabba, M. Devecseri, A. Callegari, A.G. Capodaglio. Environ. Int. 137: 105550(2020). https://doi.org/10.1016/j.envint.2020.105550 [CrossRef] [Google Scholar]
- L. Caizan–Juanarena, T. Sleutels, C. Borsje, A.T. Heijne. Renew. Energy. 157: 782–792(2020). https://doi.org/10.1016/j.renene.2020.05.049 [CrossRef] [Google Scholar]
- J. Demarco, R. Miller, D. Davis, C. Cole. Granular Activated–Carbon System, in: M.J. McGuire, I.H. Suffet, (Eds.), Treatment of Water by Granular Activated Carbon. American Chemical Society (1983). p. 525–572. https://scholar.google.co.id/scholar?hl=id≈sdt=0%2C5&q=granular+activated+carbon+management+at+a+water+treatment+plant&btnG= [Google Scholar]
- J.A. Scott, A.M. Karanjkar, D.L. Rowe. Miner. Eng. 8,1–2: 221–230(1995). https://doi.org/10.1016/0892-6875(94)00115-S [CrossRef] [Google Scholar]
- I.C.M. Rae. Water Res. 19,7:825–830(1985). https://doi.org/10.1016/0043-1354(85)90139-3 [CrossRef] [Google Scholar]
- W. Yan, Y. Xiao, W. Yan, R. Ding, S. Wang, F. Zhao. Chem. Eng. J. 358: 1421–1437(2019). https://doi.org/10.1016/j.cej.2018.10.128 [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.