Open Access
E3S Web Conf.
Volume 375, 2023
8th International Conference on Energy Science and Applied Technology (ESAT 2023)
Article Number 02010
Number of page(s) 10
Section Clean Energy Technologies
Published online 27 March 2023
  1. Li, Qi, Li, Na., Ishida, et al. Saving electric energy by integrating a photoelectrode into a Li-ion battery [J]. Journal of Materials Chemistry, A. Materials for energy and sustainability, 2015, 3(42). [Google Scholar]
  2. Boruah Buddha Deka, Wen Bo, De Volder Michael. Light Rechargeable Lithium-Ion Batteries Using V2O5 Cathodes.[J]. Nano letters, 2021, 21(8):3527-3532. [CrossRef] [PubMed] [Google Scholar]
  3. Richard Schmuch, Ralf Wagner, Gerhard Hörpel, et al. Performance and cost of materials for lithium-based rechargeable automotive batteries [J]. Nature Energy, 2018, 3(4): 267-278. [CrossRef] [Google Scholar]
  4. Shuru Chen, Chaojiang Niu, Hongkyung Lee, et al. Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J]. Joule, 2019, 3(4): 1094-1105. [CrossRef] [Google Scholar]
  5. Samaneh Mozaffari, Mohammad Reza Nateghi, Mahmood Borhani Zarandi. An overview of the Challenges in the commercialization of dye sensitized solar cells [J]. Renewable and Sustainable Energy Reviews, 2016, 71. [Google Scholar]
  6. P. Chelvanathan, S.A. Shahahmadi, F. Arith, K. Sobayel, et al. Effects of RF magnetron sputtering deposition process parameters on the properties of molybdenum thin films [J]. Thin Solid Films, 2017, 638, 213-219. [CrossRef] [Google Scholar]
  7. A. Nizamuddin, F. Arith, I.J. Rong, M. Zaimi, et al. Investigation of copper(I)thiocyanate (CuSCN) as a hole transporting layer for perovskite solar cells application, J. Adv. Res. Fluid Mech. Therm. Sci. 2021, 78, 153-159. [Google Scholar]
  8. José Antonio Luceno-Sânchez, Ana Maria Diez-Pascual, Rafael Pena Capilla. Materials for Photovoltaics: State of Art and Recent Developments [J]. International Journal of Molecular Sciences, 2019, 20(4). [Google Scholar]
  9. N.S. Noorasid, F. Arith, A.N.M. Mustafa, et al. Numerical analysis of ultrathin TiO2 photoanode layer of dye sensitized solar cell by using SCAPS-1D [J]. Proceedings of the IEEE Regional Symposium on Micro and Nanoelectronics, 2021, 96-99. [Google Scholar]
  10. O.V. Aliyaselvam, F. Arith, M.K. Nor, et al. Solution processed of solid state HTL of CuSCN layer at low annealing temperature for emerging solar cell [J]. Int. J. Renew. Energy Res, 2021. [Google Scholar]
  11. Utpal Gangopadhyay, Sukhendu Jana, Sayan Das. State of Art of Solar Photovoltaic Technology [J]. Conference Papers in Energy, 2013. [Google Scholar]
  12. N.K.A. Hamed, M.K. Ahmad, N.S.T. Urus, et al. Performance comparison between silicon solar panel and dye-sensitized solar panel in Malaysia [J]. AIP Conf. Proc. 2017. [Google Scholar]
  13. M.S. Jamal, M.S. Bashar, A.K.M. Hasan, et al. Fabrication techniques and morphological analysis of perovskite absorber layer for high-efficiency underpinning lithium - air batteries [J]. Nature Energy, 2016, 1(9). [Google Scholar]
  14. Ehsanul Kabir, Pawan Kumar, Sandeep Kumar, et al. Solar energy: Potential and future prospects [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900. [CrossRef] [Google Scholar]
  15. Zhang Kai, Gao Ke, Xia Ruoxi, et al. HighPerformance Polymer Tandem Solar Cells Employing a New n-Type Conjugated Polymer as an Interconnecting Layer [J]. Advanced materials (Deerfield Beach, Fla.), 2016, 28(24): 4817-4823. [CrossRef] [PubMed] [Google Scholar]
  16. P. Chelvanathan, S.A. Shahahmadi, F. Arith, K. Sobayel, et al. Effects of RF magnetron sputtering deposition process parameters on the properties of molybdenum thin films [J]. Thin Solid Films, 2017, 638, 213-219. [CrossRef] [Google Scholar]
  17. Sumit NAGAR, Kamal SHARMA, A. K. PANDEY. Effect of graphene and its derivatives on thermo-mechanical properties of phase change materials and its applications: a comprehensive review [J]. Frontiers in Energy, 2022. [Google Scholar]
  18. Li Jingyi, Wang Zhenyu, Zhou Zhiwei, et al. Cathode-electrolyte integrating strategy enabling solid-state lithium metal battery with enhanced cycle stability [J]. Journal of Power Sources, 2022, 544. [Google Scholar]
  19. Zhang Wendi, Fan Qianxiao, Zhang Dongmei, et al. Dynamic charge modulate lithium uniform plating functional composite anode for dendrite-free lithium metal batteries [J]. Nano Energy, 2022, 102. [Google Scholar]
  20. Boruah, B.D.; Wen, B.; Volder, M.D. Light rechargeable lithium-ion batteries using V2O5 cathodes [J]. Nano Lett. 2021, 21, 3527-3532. [CrossRef] [PubMed] [Google Scholar]
  21. V. Etacheri, R. Marom, R. Elazari. Challenges in the development of advanced Li-ion batteries: a review [J]. Energy Environ. Sci. 2011, 3243-3262. [CrossRef] [Google Scholar]
  22. N.S. Choi, Z.H. Chen, S.A. Freunberger, et al. Challenges facing lithium batteries and electrical double-layer capacitors [J]. Angew. Chem. 2012, 9994-10024. [CrossRef] [Google Scholar]
  23. Boruah, B.D.; Wen, B.; Volder, M.D. Light rechargeable lithium-ion batteries using V2O5 cathodes [J]. Nano Lett. 2021, 21, 3527-3532. [CrossRef] [PubMed] [Google Scholar]
  24. N. F. Yan, X. P. Gao. Photo-assisted rechargeable metal batteries for energy conversion and storage [J]. Energy Environ. Mater. 2021. [Google Scholar]
  25. A. Paolella, A. Vijh, A. Guerfi, et al. Review—Li-ion photo-batteries: challenges and opportunities [J]. J. Electrochem. Soc. 2020. [Google Scholar]
  26. D. Schmidt, M.D. Hager, U.S. Schubert. Photorechargeable electric energy storage systems [J]. Adv. Energy Mater. 2016. [Google Scholar]
  27. Y. Wu, C. Li, Z. Tian. Solar-driven integrated energy systems: state of the art and challenges [J]. Power Sources. 2020. [Google Scholar]
  28. Doron Aurbach, Bryan D. McCloskey, Linda F. Nazar. Advances in understanding mechanisms perovskite solar cell: A review [J]. Renewable and Sustainable Energy Reviews, 2018, 98. [Google Scholar]
  29. F. Jiao, P.G. Bruce. Mesoporous crystalline ß -MnO2 — a reversible positive electrode for rechargeable lithium batteries [J]. Adv. Mater. 2007. [Google Scholar]
  30. Jang Wook Choi, Doron Aurbach. Promise and reality of post-lithium-ion batteries with high energy densities [J]. Nature Reviews Materials, 2016, 1(4). [Google Scholar]
  31. Li Matthew, Lu Jun, Chen Zhongwei, et al. 30 Years of Lithium-Ion Batteries [J]. Advanced materials (Deerfield Beach, Fla.), 2018, 30(33). [Google Scholar]
  32. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359-367. [CrossRef] [PubMed] [Google Scholar]
  33. Tang Yuxin, Zhang Yanyan, Li Wenlong, et al. Rational material design for ultrafast rechargeable lithium-ion batteries [J]. Chemical Society reviews, 2015, 44(17): 5926-5940. [CrossRef] [PubMed] [Google Scholar]
  34. Jian Duan, Xuan Tang, Haifeng Dai, et al. Building Safe Lithium-Ion Batteries for Electric Vehicles: A Review [J]. Electrochemical Energy Reviews, 2020, 3(411):1-42. [CrossRef] [Google Scholar]
  35. Lee Wontae, Muhammad Shoaib, Sergey Chernov, et al. Advances in the Cathode Materials for Lithium Rechargeable Batteries [J]. Angewandte Chemie, 2020, 59(7): 2578-2605. [CrossRef] [PubMed] [Google Scholar]
  36. Yong Lu, Jun Chen. Prospects of organic electrode materials for practical lithium batteries [J]. Nature Reviews Chemistry, 2020, 4(3): 127-142. [CrossRef] [PubMed] [Google Scholar]
  37. Yayuan Liu, Yangying Zhu, Yi Cui. Challenges and opportunities towards fast-charging battery materials [J]. Nature Energy, 2019, 4: 540-550. [CrossRef] [Google Scholar]
  38. Wang Jie, Wang Yan, Zhu Chaofeng, et al. Photoinduced Rechargeable Lithium-Ion Battery [J]. ACS applied materials & interfaces, 2022.14, 4071-4078. [CrossRef] [PubMed] [Google Scholar]
  39. K. Amine, H. Tukamoto, H. Yasuda. A New Three-Volt SpinelLi1 + x Mn1.5Ni0.5 O 4 for Secondary Lithium Batteries [J]. Journal of The Electrochemical Society, 2019, 143(5). [Google Scholar]
  40. H.J. Peng, S. Urbonaite, C. Villevieille. Consequences of Electrolyte Degradation for the Electrochemical Performance of Li1+x(NiaCobMn1 [J]. Journal of The Electrochemical Society, 2015, 162(13). [PubMed] [Google Scholar]
  41. Qi Li, Yang Liu, Shaohua Guo. Solar energy storage in the rechargeable batteries [J]. Nano Today, 2017, 16, 46-60. [CrossRef] [Google Scholar]
  42. M. Yu, W.D. McCulloch, D.R. Beauchamp, Z. Huang, X. Ren, Y. Wu, J. Am. Chem. Soc. 2015, 137, 8332-8335. [CrossRef] [PubMed] [Google Scholar]
  43. Deka Boruah, Angus Mathieson, M De Volder. Photo-rechargeable Zinc-ion Batteries [J]. Energy & Environmental Science, 2020, 13(8): 2414-2421. [CrossRef] [Google Scholar]
  44. Boruah, B.D.; Mathieson, A.; Volder, M.D. Vanadium Dioxide Cathodes for High-Rate Photo-Rechargeable Zinc-Ion Batteries [J]. Adv. Energy Mater. 2021, 11, 2100115. [CrossRef] [Google Scholar]
  45. Boya Tang, Lutong Shan, Shuquan Liang, et al. Issues and opportunities facing aqueous zinc-ion batteries [J]. Energy & Environmental Science, 2019, 12, 3288-3304. [CrossRef] [Google Scholar]
  46. Appel, J.H.; Li, D.O.; Podlevsky, J.D.; et al. Low Cytotoxicity and Genotoxicity of TwoDimensional MoS2 and WS2. ACS Biomater [J]. Sci. Eng. 2016, 2, 361-367. [Google Scholar]
  47. Deka Boruah, Buddha; Wen, Bo; De Volder, Michael. Molybdenum Disulfide - Zinc Oxide Photocathodes for Photo-Rechargeable ZincIon Batteries [J]. Advanced energy materials. 2021. [Google Scholar]
  48. Qi Li, Yang Liu, Shaohua Guo. Solar energy storage in the rechargeable batteries [J]. Nano Today, 2017, 16, 46-60. [CrossRef] [Google Scholar]
  49. Z. Wang, H.C. Chiu, A. Paolella. Lithium photo-intercalation of cdssensitized WO3 anode for energy storage and photoelectrochromic applications [J]. ChemSusChem, 2019, 12, 2220-2230. [CrossRef] [PubMed] [Google Scholar]
  50. Zhai Tianyou, Liu Haimei, Li Huiqiao, et al. Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties [J]. Advanced materials (Deerfield Beach, Fla.), 2010, 22(23): 2547-2552. [CrossRef] [PubMed] [Google Scholar]
  51. Josny Joy, Jinu Mathew, Soney C. George. Nanomaterials for photoelectrochemical water splitting - review [J]. International Journal of Hydrogen Energy, 2018, 43(10): 4804-4817. [CrossRef] [Google Scholar]
  52. M.D. Levi, K. Gamolsky, D. Aurbach. Determination of the Li ion chemical diffusion coefficient for the topotactic solid-state reactions occurring via a two-phase or single-phase solid solution pathway [J]. Journal of Electroanalytical Chemistry, 1999, 477(1). [Google Scholar]
  53. Sharma Khushboo, Sharma Vinay, Sharma S S. Dye-Sensitized Solar Cells: Fundamentals and Current Status[J]. Nanoscale research letters, 2018, 13(1). [Google Scholar]
  54. Carmen Cavallo, Francesco Di Pascasio, Alessandro Latini. Nanostructured Semiconductor Materials for Dye-Sensitized Solar Cells [J]. Journal of Nanomaterials, 2017. [Google Scholar]
  55. Rahul Kumar, Veena Sahajwalla, Parag Bhargava. Fabrication of a counter electrode for dye-sensitized solar cells (DSSCs) using a carbon material produced with the organic ligand 2-methyl-8-hydroxyquinolinol (Mq) [J]. Nanoscale Advances, 2019. [PubMed] [Google Scholar]
  56. C. Wang, X. Zhang, D. Cao, H. Yin, X. Li, P. Cheng, B. Mi, Z. Gao, W. Deng, In situ preparation of hierarchically structured dual-layer TiO2 films by Espray method for efficient dye-sensitized solar cells [J]. Org. Electron. 2017, 135-141. [CrossRef] [Google Scholar]
  57. Bo Wang, Lei L. Kerr. Dye sensitized solar cells on paper substrates[J]. Solar Energy Materials and Solar Cells, 2011, 95(8). [Google Scholar]
  58. AR Yugis, RF Mansa, CS Sipaut. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell [J]. IOP Conference Series: Materials Science and Engineering, 2015, 78(1). [Google Scholar]
  59. Md. K. Nazeeruddin, Etienne Baranoff, Michael Grätzel. Dye-sensitized solar cells: A brief overview[J]. Solar Energy, 2011, 85(6): 1172-1178. [CrossRef] [Google Scholar]
  60. Brian E. Hardin, Henry J. Snaith, Michael D. McGehee. The renaissance of dye-sensitized solar cells [J]. Nature Photonics, 2012, 6(3): 162-169. [CrossRef] [Google Scholar]
  61. C. Xu, X. Zhang, L. Duan, et al. A photoassisted rechargeable battery: synergy, compatibility, and stability of a TiO2/dye/Cu2S bifunctional composite electrode [J]. Nanoscale, 2020. [Google Scholar]
  62. G.B. Less, J.H. Seo, S. Han. Micro [J]. Journal of The Electrochemical Society, 2012, 159(6). [Google Scholar]
  63. Zhenguo Yang, Daiwon Choi, Sebastien Kerisit, et al. Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review [J]. Journal of Power Sources, 2009, 192(2): 588-598. [CrossRef] [Google Scholar]
  64. Ludovico Macera, Giuliana Taglieri, Valeria Daniele, et al. Nano-Sized Fe(III) Oxide Particles Starting from an Innovative and Eco-Friendly Synthesis Method[J]. Nanomaterials, 2020, 10(2): 323-342. [CrossRef] [PubMed] [Google Scholar]
  65. Yao Yu, Sang Dandan, Susu Duan, et al. Excellent optoelectronic applications and electrical transport behavior of the n-WO3 nanostructures/p-diamond heterojunction: A new perspective[J]. Nanotechnology, 2021, 32(33). [PubMed] [Google Scholar]
  66. J.C. Murillo-Sierra, A. Hernandez-Ramirez, L. Hinojosa-Reyes, et al. A review on the development of visible light-responsive WO3-based photocatalysts for environmental applications [J]. Chem. Eng. J. Adv. 2021. [Google Scholar]
  67. Liu Minsu, Su Bin, Tang Yue, et al. Recent Advances in Nanostructured Vanadium Oxides and Composites for Energy Conversion [J]. Advanced Energy Materials, 2017, 7(23). [PubMed] [Google Scholar]
  68. Lee Shinbuhm, Ivanov Ilia N, Keum Jong K, et al. Epitaxial stabilization and phase instability of VO2 polymorphs [J]. Scientific reports, 2016, 6(1). [PubMed] [Google Scholar]
  69. Mattelaer Felix, Geryl Kobe, Rampelberg Geert, et al. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries [J]. ACS applied materials & interfaces, 2017, 9(15). 13121-13131. [CrossRef] [PubMed] [Google Scholar]
  70. Jing Wang, Shengzhi Yao, Weiqing Lin, et al. Improving the electrochemical properties of highvoltage lithium nickel manganese oxide by surface coating with vanadium oxides for lithium ion batteries [J]. Journal of Power Sources, 2015, 280.114-124. [CrossRef] [Google Scholar]
  71. Hongbin Zhao, Lanying Pan, Siyi Xing, et al. Vanadium oxides-reduced graphene oxide composite for lithium-ion batteries and supercapacitors with improved electrochemical performance [J]. Journal of Power Sources, 2013, 222.21-31. [CrossRef] [Google Scholar]
  72. E. Avigad, L. Etgar. Studying the effect of MoO3 in holeconductor-free perovskite solar cells [J]. ACS Energy Lett. 2018, 2240-2245. [CrossRef] [Google Scholar]
  73. Y. Zhang, P. Chen, Q. Wang, et al. High-capacity and kinetically accelerated lithium storage in MoO3 enabled by oxygen vacancies and heterostructure [J]. Adv. Energy Mater. 2021. [Google Scholar]
  74. Nanotechnology - Nanoflakes; Findings in Nanoflakes Reported from University of Brescia (Gold Functionalized Moo3 Nano Flakes for Gas Sensing Applications) [J]. Nanotechnology Weekly, 2019. [Google Scholar]
  75. Yuhua Zhu, Yuan Yao, Zhu Luo, et al. Nanostructured MoO3 for Efficient Energy and Environmental Catalysis [J]. Molecules, 2019, 25(1): 18-44. [CrossRef] [PubMed] [Google Scholar]
  76. J.S. Lee, M.S. Jo, R. Saroha, et al. Hierarchically welldeveloped porous graphene nanofibers comprising N-doped graphitic C-coated cobalt oxide hollow nanospheres as anodes for high-rate Li-ion batteries[J]. Small, 2020. [Google Scholar]
  77. Kai Wang, Jiajia Wan, Yuxuan Xiang, et al. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries [J]. Journal of Power Sources, 2020, 460(C). [Google Scholar]
  78. J. Theerthagiri, K. Karuppasamy, G. Durai, et al. Recent advances in metal chalcogenides (MX; X = S, Se) nanostructures for electrochemical supercapacitor applications: a brief review [J]. Nanomaterials, 2018. [Google Scholar]
  79. Deng Wentao, Chen Jun, Yang Li, et al. Solid Solution Metal Chalcogenides for Sodium-Ion Batteries: The Recent Advances as Anodes [J]. Small (Weinheim an der Bergstrasse, Germany), 2021, 17(35). [Google Scholar]
  80. Yeonwoong Jung, Yu Zhou, Judy J. Cha. Intercalation in two-dimensional transition metal chalcogenides [J]. Inorganic Chemistry Frontiers, 2016, 3(4): 452-463. [CrossRef] [Google Scholar]
  81. Y. Zhang, L. Zhang, T. a. Lv, et al. Twodimensional transition metal chalcogenides for alkali metal ions storage [J]. ChemSusChem, 2020. [Google Scholar]
  82. Na Li, Yarong Wang, Daiming Tang, et al. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy [J]. Angewandte Chemie, 2015, 127(32): 9271-9274. [Google Scholar]
  83. Kojima Akihiro, Teshima Kenjiro, Shirai Yasuo, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells [J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [CrossRef] [PubMed] [Google Scholar]
  84. Wehrenfennig Christian, Eperon Giles E, Johnston Michael B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites [J]. Advanced materials (Deerfield Beach, Fla.), 2014, 26(10): 1584-1589. [CrossRef] [PubMed] [Google Scholar]
  85. Z. Li, M.L. Li, X.X. Wang, et al. In situ fabricated photo-electro-catalytic hybrid cathode for lightassisted lithium-CO2 batteries [J]. Mater. Chem. 2020. [Google Scholar]
  86. C. Jia, F. Zhang, L. She, et al. Ultra-large sized siloxene nanosheets as bifunctional photocatalyst for a Li-O2 battery with superior round-trip efficiency and extra-long durability [J]. Angew. Chem. Int. Ed, 2021. [Google Scholar]
  87. Henry J. Snaith. Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells [J]. J. Phys. Chem. Lett. 2013, 4(21):3623-3630. [CrossRef] [Google Scholar]
  88. Green Martin, Dunlop Ewan, HohlEbinger Jochen, et al. Solar cell efficiency tables (version 57) [J]. Progress in Photovoltaics: Research and Applications, 2020, 29(1). [Google Scholar]
  89. Sarritzu Valerio, Sestu Nicola, Marongiu Daniela, et al. Optical determination of Shockley-Read-Hall and interface recombination currents in hybrid perovskites [J]. Scientific reports, 2017, 7(1): 1-10. [CrossRef] [PubMed] [Google Scholar]
  90. Chen Bo, Rudd Peter N, Yang Shuang, et al. Imperfections and their passivation in halide perovskite solar cells [J]. Chemical Society reviews, 2019, 48(14): 3842-3867. [CrossRef] [PubMed] [Google Scholar]
  91. Yi Yang, Huirong Peng, Cheng Liu, et al. Bifunctional additive engineering for high-performance perovskite solar cells with reduced trap density [J]. Journal of Materials Chemistry A, 2019, 6450-6458. [CrossRef] [Google Scholar]
  92. Chen Yuan, Wang Chengliang. Designing High Performance Organic Batteries [J]. Accounts of chemical research, 2020, 53(11): 2636-2647. [CrossRef] [PubMed] [Google Scholar]
  93. Yang Xu, Min Zhou, Yong Lei. Organic materials for rechargeable sodium-ion batteries [J]. Materials Today, 2018, 21(1): 60-78. [CrossRef] [Google Scholar]
  94. J. Xie, Q. Zhang. Recent progress in aqueous monovalention batteries with organic materials as promising electrodes [J]. Mater. Today Energy, 2020. [Google Scholar]
  95. Xie Jian, Zhang Qichun. Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal-Ion Rechargeable Batteries with Organic Materials as Promising Electrodes [J]. Small (Weinheim an der Bergstrasse, Germany), 2019, 15(15). [Google Scholar]
  96. Zhang Bingqing, He Lihue, Yao Tingting, et al. Simultaneous Photoelectrocatalytic Water Oxidation and Oxygen Reduction for Solar Electricity Production in Alkaline Solution[J]. ChemSusChem, 2019, 12(5): 1026-1032. [CrossRef] [PubMed] [Google Scholar]
  97. Wang Xinchen, Maeda Kazuhiko, Thomas Arne, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nature materials, 2009, 8(1): 76-80. [CrossRef] [PubMed] [Google Scholar]
  98. Q. Zhang, X. Liu, M. Chaker, et al. Advancing graphitic carbon nitride-based photocatalysts toward broadband solar energy harvesting [J]. ACS Mater. Lett. 2021. [Google Scholar]
  99. Nanotechnology - Photocatalytics; Investigators at King Abdul-Aziz University Describe Findings in Photocatalytics (g-C3N4-Based Heterostructured Photocatalysts) [J]. Nanotechnology Weekly, 2018. [Google Scholar]
  100. Y. Yoon, M. Lee, S.K. Kim, et al. A strategy for synthesis of carbon nitride induced chemically doped 2D MXene for highperformance supercapacitor electrodes [J]. Adv. Energy Mater. 2018. [Google Scholar]
  101. Y. Liu, N. Li, S. Wu, et al. Reducing the charging voltage of a Li- O2 battery to 1.9 V by incorporating a photocatalyst [J]. Energy Environ. 2015. [Google Scholar]
  102. Z. Zhu, Y. Ni, Q. Lv, et al. Surface plasmon mediates the visible light-responsive lithium-oxygen battery with Au nanoparticles on defective carbon nitride [J]. Proc. Natl. Acad. Sci. Unit. States Am. 2021. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.