Open Access
Issue
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
Article Number 09006
Number of page(s) 6
Section Water Retention Curves
DOI https://doi.org/10.1051/e3sconf/202338209006
Published online 24 April 2023
  1. A.A. Abed, W.T. Sołowski, A study on how to couple thermo-hydro-mechanical behaviour of unsaturated soils: Physical equations, numerical implementation and examples, Comput Geotech 92:132–155 (2017). [CrossRef] [Google Scholar]
  2. D. Sun, D. Sheng, L. Xiang, S.W. Sloan, Elastoplastic prediction of hydro-mechanical behaviour of unsaturated soils under undrained conditions, Comput Geotech 35:845–852 (2008). [CrossRef] [Google Scholar]
  3. A. Zhou, D. Sheng, An advanced hydro-mechanical constitutive model for unsaturated soils with different initial densities, Comput Geotech 63:46–66 (2015). [CrossRef] [Google Scholar]
  4. T. V. Duong, V.N. Trinh, Y.J. Cui, A.M. Tang, N. Calon, Development of a Large-Scale Infiltration Column for Studying the Hydraulic Conductivity of Unsaturated Fouled Ballast, Geotech Test J 36:54–63 (2013). [Google Scholar]
  5. D.G. Toll, S.D.N. Lourenço, J. Mendes, Advances in suction measurements using high suction tensiometers, Eng Geol 165:29–37 (2013) [CrossRef] [Google Scholar]
  6. J.A. Blatz, Y.J. Cui, L. Oldecop, Vapour Equilibrium and Osmotic Technique for Suction Control. In: Laboratory and Field Testing of Unsaturated Soils, Springer Netherlands, Dordrecht, pp 49–61 (2008) [Google Scholar]
  7. M.A. Rouf, S. Hamamoto, K. Kawamoto, T. Sakaki, T. Komatsu, P. Moldrup, Unified measurement system with suction control for measuring hysteresis in soil-gas transport parameters, Water Resour Res 48:1–11 (2012) [CrossRef] [Google Scholar]
  8. T. Young, III. An essay on the cohesion of fluids, Philos Trans R Soc London 65–87 (1805) [Google Scholar]
  9. P.S. Laplace, Supplement to book 10 of Mecanique Celeste, Crapelet, Courcier, Bachelier, Paris (1806) [Google Scholar]
  10. W.B. Lindquist, A. Venkatarangan, J.R. Dunsmuir, T. Wong, Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J Geophys Res Solid Earth 105:21509–21527 (2000) [CrossRef] [Google Scholar]
  11. M. Wang, G.N. Pande, L.W. Kong, Y.T. Feng Comparison of Pore-Size Distribution of Soils Obtained by Different Methods, Int J Geomech 17:06016012 (2017) [CrossRef] [Google Scholar]
  12. P. Delage, M. Audiguier, Y.J. Cui, M. Deveughèle (1995), Propriétés de rétention d’eau et microstructure de différents géomatériaux, In: XIème Conférence Européenne de Mécanique des Sols et des Travaux de Fondations pp 43–48 [Google Scholar]
  13. A.C. Turturro, M.C. Caputo, H.H. Gerke, Mercury intrusion porosimetry and centrifuge methods for extended-range retention curves of soil and porous rock samples, Vadose Zo J 21:1–11 (2022) [Google Scholar]
  14. J.A. Muñoz-Castelblanco, J.M. Pereira, P. Delage, Y.J. Cui, The water retention properties of a natural unsaturated loess from northern France, Géotechnique 62:95–106 (2012) [CrossRef] [Google Scholar]
  15. E. Romero, A. Gens, A. Lloret, Water permeability, water retention and microstructure of unsaturated compacted Boom clay, Eng Geol 54:117–127 (1999) [CrossRef] [Google Scholar]
  16. N.E. Edlefsen, A.B.C Anderson Thermodynamics of soil moisture. Hilgardia 15:31–298 (1943) [CrossRef] [Google Scholar]
  17. M. Bittelli, M. Flury, G.S. Campbell, A thermodielectric analyzer to measure the freezing and moisture characteristic of porous media, Water Resour Res 39 (2003) [CrossRef] [Google Scholar]
  18. K. Yoshikawa, P.P. Overduin, Comparing unfrozen water content measurements of frozen soil using recently developed commercial sensors, Cold Reg Sci Technol 42:250–256 (2005) [CrossRef] [Google Scholar]
  19. J. Ren, S.K. Vanapalli, Comparison of Soil-Freezing and Soil-Water Characteristic Curves of Two Canadian Soils, Vadose Zo J 18:1–14 (2019) [CrossRef] [Google Scholar]
  20. S.F. Santoyo, T. Baser, A review of the existing data on soil-freezing experiments and assessment of soil- freezing curves derived from soil–water retention curves, J Cold Reg Eng 36:1–12 (2022) [CrossRef] [Google Scholar]
  21. K.V.Bicalho, F.V. Gonçalves, L.S. Favero Evaluation of the Soil-Water Retention Curves of Different Unsaturated Silt-Sand Soil Mixtures, In: PanAm Unsaturated Soils 2017 pp 95–103 (2017) [Google Scholar]
  22. Y. Su, Y.J. Cui, J.C. Dupla, J. Canou, Soil-water retention behaviour of fine/coarse soil mixture with varying coarse grain contents and fine soil dry densities, Can Geotech J 59:291–299 (2022). [CrossRef] [Google Scholar]
  23. S.K. Vanapalli, D.G. Fredlund, D.E. Pufahl, The influence of soil structure and stress history on the soil–water characteristics of a compacted till, Géotechnique 49:143–159 (1999) [CrossRef] [Google Scholar]
  24. J.M. Baetens, K. Verbist, W.M. Cornelis, D. Gabriels, G. Soto, On the influence of coarse fragments on soil water retention, Water Resour Res 45 (2009) [CrossRef] [Google Scholar]
  25. C.P.K. Gallage, T. Uchimura, Effects of Dry Density and Grain Size Distribution on Soil-Water Characteristic Curves of Sandy Soils, Soils Found 50:161–172 (2010) [CrossRef] [Google Scholar]
  26. C.H. Benson, I. Chiang, T. Chalermyanont, A. Sawangsuriya, Estimating van Genuchten Parameters α and n for Clean Sands from Particle Size Distribution Data, In: From Soil Behavior Fundamentals to Innovations in Geotechnical Engineering: Honoring Roy E. Olson, American Society of Civil Engineers pp 410–427 (2014) [CrossRef] [Google Scholar]
  27. A.S.S. Raghuram, B.M. Basha, A.A.B. Moghal, Effect of Fines Content on the Hysteretic Behavior of Water-Retention Characteristic Curves of Reconstituted Soils, J Mater Civ Eng 32:04020057 (2020) [CrossRef] [Google Scholar]
  28. Q. Zhang, Z. Cao, C. Gu, Y. Cai, Prediction of Soil– Water Retention Curves of Road Base Aggregate with Various Clay Fine Contents, Appl Sci 12:3624 (2022) [CrossRef] [Google Scholar]
  29. K. Boussaid, Sols intermédiaires pour la modélisation physique : application aux fondations superficielles, École Centrale de Nantes et Université de Nantes (2005) [Google Scholar]
  30. A. Tarantino, D. Gallipoli, C.E. Augarde, V. D. Gennaro, R. Gomez, L. Laloui, C. Mancuso, G. E. Mountassir, J.J. Munoz, J.M. Pereira, H. Peron, G. Pisoni, E. Romero, A. Raveendiraraj, J.C. Rojas, D.G. Toll, S. Tombolato, S. Wheeler, Benchmark of experimental techniques for measuring and controlling suction, Géotechnique 61:303–312 (2011) [CrossRef] [Google Scholar]
  31. V.T. Nguyen, H. Heindl, J.M. Pereira, A.M. Tang, J.D. Frost, Water retention and thermal conductivity of a natural unsaturated loess, Géotechnique Lett 7:286–291 (2017) [CrossRef] [Google Scholar]
  32. Y. Wang, Y.J. Cui, A.M. Tang, N. Benahmed, W.J. Sun, Shrinkage behaviour of a compacted lime- treated clay, Geotech Lett 10:174–178 (2020) [CrossRef] [Google Scholar]
  33. P. Delage, F.M. Pellerin, Influence de la lyophilisation sur la structure d’une argile sensible du Québec, Clay Miner 19:151–160 (1984) [CrossRef] [Google Scholar]
  34. C. Doussan, S. Ruy, Prediction of unsaturated soil hydraulic conductivity with electrical conductivity, Water Resour Res 45:1–12 (2009). [CrossRef] [Google Scholar]
  35. K. Yin, A.L. Fauchille, E.D. Filippo, K. Othmani, S. Branchu, G. Sciarra, P. Kotronis, The Influence of Mixing Orders on the Microstructure of Artificially Prepared Sand-Clay Mixtures, Adv Mater Sci Eng (2021) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.