Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 04003
Number of page(s) 4
Section Polymer Chemistry and Chemical Research Progress
Published online 04 May 2023
  1. Tyurnina A.V., Tzanakis I., Morton J., Mi J., Porfyrakis K., Maciejewska B.M., Grobert N., Eskin D.G. 2020 Ultrasonic exfoliation of graphene in water: A key parameter study, Carbon 168 737–747. [CrossRef] [Google Scholar]
  2. Zhu S., Wu M., Ge M.H., Zhang H., Li S.K. and Li C.H. 2016 Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors Journal of Power Sources 306 593–601. [CrossRef] [Google Scholar]
  3. Pham M.H., Khazaeli A., Godbille-Cardona G., Truica-Marasescu F., Peppley B. and Barz D.P. 2020 Printing of graphene supercapacitors with enhanced capacitances induced by a leavening agent. J. Energy Storage 28 101210. [CrossRef] [Google Scholar]
  4. Ou X.H. and Xu X.C. 2016 A simple method to fabricate poly(aniline-copyrrole) with highly improved electrical conductivity via pre-polymerization RSC Adv. 6 13780–5. [CrossRef] [Google Scholar]
  5. Khazaeli A., Godbille-Cardona G. and Barz D.P. 2020 A novel flexible hybrid battery- supercapacitor based on a self-assembled vanadium-graphene hydrogel, Adv. Funct. Mater. 30 (21) 1910738. [CrossRef] [Google Scholar]
  6. Dang H.X. and Barz D.P. 2022 Graphene electrode functionalization for high performance hybrid energy storage with vanadyl sulfate redox electrolytes. J. Power Sources 517 230712. [CrossRef] [Google Scholar]
  7. Minisha S., Vedhi C., and Rajakani P. 2022 Review— Methods of graphene synthesis and graphene-based electrode material for supercapacitor applications. ECS Journal of Solid State Science and Technology, 11 111002. [CrossRef] [Google Scholar]
  8. Lee K.S. and Jeong H.T. 2022 Optimization of electrochemical performance for activated carbon and functionalized graphene composite-based supercapacitor. Journal of Materials Engineering and Performance, 31 4679–4686. [CrossRef] [Google Scholar]
  9. Sellathurai A.J., Mypati S., Kontopoulou M. and Dominik PJB. 2023 High yields of graphene nanoplatelets by liquid phase exfoliation using graphene oxide as a stabilizer. Chemical Engineering Journal, 4511 38365. [Google Scholar]
  10. Oltean V.A., Renault S., Valvo M. and Brandell D. 2016 Sustainable Materials for Sustainable Energy Storage: Organic Na Electrodes Materials 9 142. [CrossRef] [PubMed] [Google Scholar]
  11. Ghosh T., Basak U., Bairi K.P., Ghosh R., Pakhira M., Ball R., Biswas B. and Chatterjee D.P. 2020 Hierarchical nanocomposites by oligomer-initiated controlled polymerization of aniline on graphene oxide sheets for energy storage. ACS Appl. Nano Mater. 3 1693. [CrossRef] [Google Scholar]
  12. Lai L.F., Yang H.P. and Wang L. 2012 Preparation of supercapacitor electrodes through selection of graphene surface functionalities ACS Nano 6 5941–5951. [CrossRef] [PubMed] [Google Scholar]
  13. Wu N., Bai X., Pan D., Dong B., Wei R., Naik N., Patil R.R. and Guo Z. 2021 Recent advances of asymmetric supercapacitors. Adv. Mater. Interfaces 8 1. [Google Scholar]
  14. Biswas S. and Drzal L.T. 2010 Multi layered Nanoarchitecture of Graphene Nanosheets and Polypyrrole Nanowires for High Performance Supercapacitor Electrodes Chem. Mater. 22 5667–5671. [CrossRef] [Google Scholar]
  15. Chatterjee D.P. and Nandi A.K. 2021 A review on the recent advances in hybrid supercapacitors. J. Mater. Chem. A 9 15880. [CrossRef] [Google Scholar]
  16. Huang L.M., Lin H.Z. and Wen T.C. 2006 Highly dispersed hydrous ruthenium oxide in poly(3,4- ethylenedioxythiophene)-poly(styrene sulfonic acid) for supercapacitor electrode Electrochim. Acta 52 1058–1063. [CrossRef] [Google Scholar]
  17. Beeran Y., Reddy H. and Ahmad Z. 2020 Graphene based aerogels:fundamentals and applications as supercapacitors. J. Energy Storage 30 101549. [CrossRef] [Google Scholar]
  18. He Y., Du S.S., Li H.L., Cheng Q.L., Pavlinek V. and Saha P. 2016 MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes Journal of Solid State Electrochemistry 20 1459–1467. [CrossRef] [Google Scholar]
  19. Sahoo B.B., Kumar N., Panda H.S., Panigrahy B., Sahoo N.K., Soam A., Mahanto B.S. and Sahoo P.K. 2021 Self-assembled 3D graphene-based aerogel with Au nanoparticles as high-performance supercapacitor electrode. J. Energy Storage 43 103157–103157. [CrossRef] [Google Scholar]
  20. Nasir A., Raza A., Tahir M., Yasin T., Nadeem M. and Ahmad B. 2023 Synthesis and study of polyaniline grafted graphene oxide nanohybrids. Materials Research Bulletin, 157 112006 [CrossRef] [Google Scholar]
  21. Chen J.C., Wang Y.M., Cao J.Y., Liu Y., Ouyang J.H., Jia D.C. and Zhou Y. 2015 Flexible and solid-state asymmetric supercapacitor based on ternary grapheme/MnO2/carbon black hybrid film with high power pergormance Electrochim. Acta 182 861–870. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.