Open Access
E3S Web Conf.
Volume 385, 2023
2023 8th International Symposium on Energy Science and Chemical Engineering (ISESCE 2023)
Article Number 04004
Number of page(s) 6
Section Polymer Chemistry and Chemical Research Progress
Published online 04 May 2023
  1. Chernysh Y., Yakhnenko O., Chubur V., Roubik H. (2021) Phosphogypsum recycling: A review of environmental issues, current Trends, and prospects. Appl. Sci-Basel., 11(4). doi: 10.3390/app11041575. [Google Scholar]
  2. Ma D., Wang Q.H. (2023) Experimental study of CaS preparation from lignite-reduced phosphogypsum in a fluidized bed. J. Chem. Technol. Biotechnol., 98(3):756–772 doi: 10.1002/jctb.7285. [CrossRef] [Google Scholar]
  3. Yan B., Ma L., Xie L., Ma J., Zi Z., Yan X. (2013) Reaction mechanism for iron catalyst in the process of phosphogypsum decomposition. Ind. Eng. Chem. Res., 52(49):17383–9. doi: 10.1021/ie402321w. [CrossRef] [Google Scholar]
  4. Lian Y., Ma L., Liu H., Tang J., Zhu B., Ma G. (2016) Experimental study on preparation of calcium sulfide via phosphogypsum and hydrogen sulfide reaction. Chem Eng (China), 44(8):48–52. doi: 10.3969/j.issn.1005-9954.2016.08.010 [Google Scholar]
  5. Zheng S.C., Ning P., Ma L.P., Niu X.K., Zhang W., Chen Y.H. (2011) Reductive decomposition of phosphogypsum with high-sulfur-concentration coal to SO2 in an inert atmosphere. Chem. Eng. Res. Des., 89(12A):2736–41. doi: 10.1016/j.cherd.2011.03.016. [CrossRef] [Google Scholar]
  6. Miao Z., Wang T., Yang H.R., Zhang H., Zhang X.Y. (2012) Utilization of desulfurization gypsum to producing SO2 and CaO in multi-stage fluidized bed. In: 7th International Symposium on Coal Combustion. Harbin. pp. 415–418. doi: 10.1007/978-3-642-30445-384 [Google Scholar]
  7. Xia X., Zhang L., Li Z., Yuan X., Ma C., Song Z. (2022) Recovery of CaO from CaSO4 via CO reduction decomposition under different atmospheres. J. Environ. Manage., 301:113855. doi: [CrossRef] [Google Scholar]
  8. Zhang X.M., Song X.F., Sun Z., Li P., Yu J.G. (2012) Density functional theory study on the mechanism of calcium sulfate reductive decomposition by carbon monoxide. Ind. Eng. Chem. Res., 51(18):6563–6570. doi: 10.1021/ie202203b. [CrossRef] [Google Scholar]
  9. Okumura S., Mihara N., Kamiya K., Ozawa S., Onyango M.S., Kojima Y. (2003) Recovery of CaO by reductive decomposition of spent gypsum in a CO-CO2-N2 atmosphere. Ind. Eng. Chem. Res., 42(24):6046–6052. doi: 10.1021/ie0302645. [CrossRef] [Google Scholar]
  10. Xiao H., Zhou J., Cao X., Fan H., Cheng J., Cen K. (2005) Experiments and model of the decomposition of CaSO4 under CO atmosphere. J. Fuel Chem. Technol. (Beijing, China)., 33(2):150–154. [Google Scholar]
  11. Zhu K., Xie G., Chen Z., Wang Q. (2013) Reaction characteristics of phosphogypsum under carbon monoxide atmosphere. J Chin Ceram Soc., 41(11):1540–1545. doi: 10.7521/j.issn.0454-5648.2013.11.13 [Google Scholar]
  12. Bi Y.X., Xu L., Yang M., Chen Q.L. (2022) Study on the effect of the activity of anthracite on the decomposition of phosphogypsum. Ind. Eng. Chem. Res., 61(19):6311–6321. doi: 10.1021/acs.iecr.2c00081. [CrossRef] [Google Scholar]
  13. Qu Y., Li A., Wang D., Zhang L., Ji G. (2019) Kinetic study of the effect of in-situ mineral solids on pyrolysis process of oil sludge. Chem. Eng. J., 374:338–46. doi: [CrossRef] [Google Scholar]
  14. He H.W., Hao L.F., Fan C.G., Li S.G., Lin W.G. (2022) A two-step approach to phosphogypsum decomposition: Oxidation of CaS with CO2. Thermochim Acta., 708. doi: 10.1016/j.tca.2021.179122. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.