Open Access
Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01079 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.1051/e3sconf/202339101079 | |
Published online | 05 June 2023 |
- J.E. Hulla, S.C. Sahu, A.W. Hayes, Nanotechnology: History and future. Human & experimental toxicology, 34(12), 1318–1321, (2015). [CrossRef] [PubMed] [Google Scholar]
- V.J. Morris. Foods, Materials, Technologies and Risks, Encyclopaedia of Food Safety, (2014). [Google Scholar]
- D.W. Hobson, Industrial Biotechnology and Commodity Products, Comprehensive Biotechnology, 2nd edition, (2011). [Google Scholar]
- J. R Jeremy. Nanotechnology, 2nd edition, (2016). [Google Scholar]
- G. A Divesh. Literature review of Nanotechnology, Journal of emerging technologies and innovation research, Volume 6, Issue 1, Gaalgotias University, Uttar Pradesh, (2019). [Google Scholar]
- F.A. Zaid, Nuha, A.A. Aklas. Effects of solvents on the size of copper oxide particles fabricated using photolysis method, Asian Journal of Chemistry, pp: 223–225, (2018). [Google Scholar]
- F. Berthiaume, T.J. Maguire, M.L. Yarmush. Tissue engineering and regenerative medicine: history, progress, and challenges. Annual review of chemical and biomolecular engineering, 2, 403–430, (2011). [CrossRef] [PubMed] [Google Scholar]
- Matthew, S.H. Management of Emerging Public Health Issues and Risks, (2019). [Google Scholar]
- P.I. Avinash, R. Mahendra. Nanoremediation, Microbial Biodegradation and bioremediation, (2014). [Google Scholar]
- S.E. McNeil, Nanotechnology for the biologist. Journal of leukocyte biology, 78(3), 585–594, (2005). [CrossRef] [PubMed] [Google Scholar]
- H. Kumar, K. Kuca, S.K. Bhatia, K. Saini, A. Kaushal, R. Verma, D. Kumar. Applications of nanotechnology in sensor-based detection of foodborne pathogens. Sensors, 20(7), (2020). [Google Scholar]
- P. Pandey. Role of nanotechnology in electronics: A review of recent developments and patents. Recent Patents on Nanotechnology, 16(1), 45–66, (2022). [CrossRef] [PubMed] [Google Scholar]
- S.K.B. Sahoo, S. Parveen, J.J. Panda. The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, biology, and medicine, 3(1), 20–31, (2007). [CrossRef] [Google Scholar]
- D. Bhattacharyya, S. Singh, N. Satnalika, A. Khandelwal, S.H. Jeon. Nanotechnology, big things from a tiny world: a review. International Journal of u-and e-Service, Science and Technology, 2(3), 29–38, (2009). [Google Scholar]
- S.S. Suri, H. Fenniri, B. Singh. Nanotechnology-based drug delivery systems. Journal of occupational medicine and Toxicology, 2, 1–6, (2007). [CrossRef] [Google Scholar]
- K. Park. Facing the truth about nanotechnology in drug delivery. ACS nano, 7(9), 7442–7447, (2013). [CrossRef] [PubMed] [Google Scholar]
- NNI Applications of Nanotechnology, National Nanotechnology Initiative, Alexandria, pp: 12–22, (2022). [Google Scholar]
- Z.L. Wang, W. Wu (Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angewandte Chemie International Edition, 51(47), 11700–11721, (2012). [CrossRef] [Google Scholar]
- Z.L. Wang, W. Wu, Nanotechnology-enabled energy harvesting for self-powered micro- /nanosystems. Angewandte Chemie International Edition, 51(47), 11700–11721, (2012). [CrossRef] [Google Scholar]
- D. Elcock. Potential impacts of nanotechnology on energy transmission applications and needs (No. ANL/EVS/TM/08-3). Argonne National Lab. (ANL), Argonne, IL (United States), (2007). [Google Scholar]
- E. Serrano, G. Rus, J. Garcia-Martinez. Nanotechnology for sustainable energy. Renewable and Sustainable Energy Reviews, 13(9), 2373–2384, (2009). [CrossRef] [Google Scholar]
- A. Sadoghifar, S.R. Heikalabad. A Content-Addressable Memory structure using quantum cells in nanotechnology with energy dissipation analysis. Physica B: Condensed Matter, 537, 202–206, (2018). [CrossRef] [Google Scholar]
- K. Gilstrap, X. Hu, X. Lu, X. He, Nanotechnology for energy-based cancer therapies. American Journal of Cancer Research, 1(4), 508, (2011). [PubMed] [Google Scholar]
- R. Asmatulu, W.S. Khan, Nanotechnology safety in the energy industry. In Nanotechnology Safety, Elsevier, (pp. 127–139). (2013). [Google Scholar]
- Z. Abdin, M.A. Alim, R. Saidur, M.R. Islam, W. Rashmi, S. Mekhilef, A. Wadi. Solar energy harvesting with the application of nanotechnology. Renewable and sustainable energy reviews, 26, 837–852, (2013). [CrossRef] [Google Scholar]
- T. I Shaheen. Nanotechnology for modern textiles: highlights on smart applications. The Journal of the Textile Institute, 113(10), 2274–2284, (2022). [CrossRef] [Google Scholar]
- A.P.S. Sawhney, B. Condon, K.V. Singh, S.S. Pang, G. Li, D. Hui. Modern applications of nanotechnology in textiles. Textile Research Journal, 78(8), 731–739, (2008). [Google Scholar]
- M.A. Shah, B.M. Pirzada, G. Price, A.L. Shibiru, A. Qurashi. Applications of nanotechnology in smart textile industry : A critical review. Journal of Advanced Research, (2022). [Google Scholar]
- A. Afzali, S.H. Maghsoodlou. Modern application of nanotechnology in textile. Nanostructured Polymer Blends and Composites in Textiles, 41–85, (2016). [Google Scholar]
- R. Mahmud, F. Nabi. Application of nanotechnology in the field of textile. IOSR J. Polym. Text. Eng, 4(1), (2017). [Google Scholar]
- S. Malik, K. Muhammad, Y. Waheed. Nanotechnology: A Revolution in Modern Industry. Molecules, 28(2), 661, (2023). [CrossRef] [PubMed] [Google Scholar]
- P.D. Sarvalkar, S.D. Barawkar, O.S. Karvekar, P.D Patil, S.R. Prasad, K.K. Sharma, R.S. Vhatkar. A review on multifunctional nanotechnological aspects in modern textile. The Journal of The Textile Institute, 1–18 (2022). [Google Scholar]
- P.S. Sawhney, Singh, K., Condon, B., Sachinvala, N., & Hui, D. Scope of nanotechnology in modern textiles. World J Eng, 7(1), 1–4, (2010). [Google Scholar]
- J.K. Patra, S. Gouda. Application of nanotechnology in textile engineering: An overview. Journal of Engineering and Technology Research, 5(5), 104–111, (2013). [CrossRef] [Google Scholar]
- S. Gulati, S. Kumar, S. Kumar, W. Wadhawan, K. Batra. Wrinkle-Resistant Fabrics: Nanotechnology in Modern Textiles. In Handbook of Consumer Nanoproducts (pp. 911–928). Singapore: Springer Nature Singapore, (2022). [CrossRef] [Google Scholar]
- S. Maghsoodlou, Afzali. Modern applications of nanoengineered materials in textile industries. Engineering Textiles: Research Methodologies, Concepts, and Modern Applications, 137, (2015). [Google Scholar]
- P. Barr. Nanotechnology in the modern textile era, (2017). [Google Scholar]
- D. Vadivel, D. Dondi. Protective textiles from the past and for the modern age. In Protective Textiles from Natural Resources (pp. 113–131). Woodhead Publishing, (2022). [CrossRef] [Google Scholar]
- O.A. Golraa, A. Luqmanc, N.M. Buttd. Strategy for introducing nanotechnology in the textile industry of Pakistan. International Journal, 2(4), (2011). [Google Scholar]
- N. Tarafder. Applications of nanotechnology for textile products: A review. Nanoscale Reports, 1(3), 15–22, (2018). [CrossRef] [Google Scholar]
- R. Paul. Functional finishes for textiles: An overview. Functional Finishes for Textiles, Improving Comfort, Performance, and Protection, 1–14, (2015). [Google Scholar]
- B.S. Hassan, G.M.N. Islam, A.N.M.A. Haque. Applications of nanotechnology in textiles: A review. Adv. Res. Text. Eng, 4(2), 1038, (2019). [Google Scholar]
- C.M. Hussain. (Ed.). Handbook of nanomaterials for manufacturing applications. Elsevier, (2020). [Google Scholar]
- P. Miskiewicz. Nanotechnology in the textile industry. World Scientific News, 100, 74–85, (2018). [Google Scholar]
- B.S. Hassan, G.M.N. Islam, A.N.M.A. Haque, (2019). Applications of nanotechnology in textiles: A review. Adv. Res. Text. Eng, 4(2), 1038, (2019). [Google Scholar]
- P. Pramanik, P. Krishnan, A. Maity, N. Mridha, A. Mukherjee, V. Rai. Application of nanotechnology in agriculture. In Environmental Nanotechnology. Springer, Cham. Volume 4 (pp. 317–348), (2020). [Google Scholar]
- L. Jasmani, R. Rusli, T. Khadiran, R. Jalil, S. Adnan. Application of nanotechnology in wood-based products industry: A review. Nanoscale research letters, 15(1), 1–31, (2020). [CrossRef] [PubMed] [Google Scholar]
- P. Evans, H. Matsunaga, M. Kiguchi. Large-scale application of nanotechnology for wood protection. Nature Nanotechnology, 3(10), 577–577 (2008). [CrossRef] [PubMed] [Google Scholar]
- W. Bi, H. Li. D. Hui, M. Gaff, R. Lorenzo, I. Corbi, M. Ashraf. Effects of chemical modification and nanotechnology on wood properties. Nanotechnology Reviews, 10(1), 978–1008. [Google Scholar]
- Teng, T.J. Arip, M.N.M., Sudesh, K., Nemoikina, A., Jalaludin, Z., Ng, E.P., Lee, H.L. (2018). Conventional technology and nanotechnology in wood preservation: A review. BioResources, 13(4), 9220–9252, (2021). [Google Scholar]
- G.B. Goffredo, B. Citterio, F. Biavasco, F. Stazi, S. Barcelli, P. Munafo. Nanotechnology on wood: The effect of photocatalytic nanocoatings against Aspergillus niger. Journal of Cultural Heritage, 27, 125–136, (2017). [CrossRef] [Google Scholar]
- H.R. Taghiyari, Nanotechnology in wood and wood-composite materials. J Nanomater MolNanotechnol 3: 1 (2), 2, (2014). [Google Scholar]
- A.N. Papadopoulos, H. R Taghiyari. Innovative wood surface treatments based on nanotechnology. Coatings, 9(12), 866, (2019). [CrossRef] [Google Scholar]
- S. Wood, A. Geldart, R. Jones. The social and economic challenges of nanotechnology. TATuP-Zeitschrift für Technikfolgenabschätzung in Theorie und Praxis, 12(3-4), 72–73, (2003). [CrossRef] [Google Scholar]
- A.N. Papadopoulos, G.Z. Kyzas. Nanotechnology and wood science. In Interface Science and Technology, Elsevier. (Vol. 30, pp. 199–216), (2019). [CrossRef] [Google Scholar]
- P.K. Mishra, K. Giagli, D. Tsalagkas, H. Mishra, S. Talegaonkar, V. Gryc, R. Wimmer. Changing face of wood science in the modern era: Contribution of nanotechnology. Recent Patents on Nanotechnology, 12(1), 13–21, (2018). [CrossRef] [PubMed] [Google Scholar]
- T.A. Tabet, F.A. Aziz. Cellulose microfibril angle in wood and its dynamic mechanical significance. Cellulose-fundamental aspects, 113–142, (2013). [Google Scholar]
- K. Giagli, J. Gricar, H. Vavrcik, V. Gryc. Nine-year monitoring of cambial seasonality and cell production in Norway spruce. iForest-Biogeosciences and Forestry, 9(3), 375, (2016). [CrossRef] [Google Scholar]
- G. I Mantanis, A.N. Papadopoulos. The sorption of water vapour of wood treated with a nanotechnology compound. Wood science and technology, 44(3), 515–522, (2010). [CrossRef] [Google Scholar]
- X. Cai. Wood modifications for valued-added applications using nanotechnology-based approaches (Doctoral dissertation, Université Laval), (2007). [Google Scholar]
- W. Xu, X. Wang, N. Sandler, S. Willfor, C. Xu. Three-dimensional printing of wood- derived biopolymers: a review focused on biomedical applications. ACS sustainable chemistry & Engineering, 6(5), 5663–5680, (2018). [CrossRef] [PubMed] [Google Scholar]
- S. Kamel. Nanotechnology and its applications in lignocellulosic composites, a mini- review. Express Polymer Letters, 1(9), 546–575, (2007). [CrossRef] [Google Scholar]
- J.A. Ali, A.M. Kalhury, A.N. Sabir, R.N. Ahmed, N.H. Ali, A.D. Abdullah. A state- of-the-art review of the application ofnanotechnology in the oil and gas industry with a focus on drilling engineering. Journal of Petroleum Science and Engineering, 191, 107118, (2020). [CrossRef] [Google Scholar]
- M. Al-Shargabi, S. Davoodi, D.A. Wood, A. Al-Musai, V.S. Rukavishnikov, K.M. Minaev. Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review. Journal of Molecular Liquids, 118725, (2022). [CrossRef] [Google Scholar]
- S.H. Hajiabadi, H. Aghaei, M. Kalateh-Aghamohammadi, M. Shorgasthi. An overview of the significance of carbon-based nanomaterials in the upstream oil and gas industry. Journal of Petroleum Science and Engineering, 186, 106783, (2020). [CrossRef] [Google Scholar]
- M.F. Fakoya, S.N. Shah. The emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles. Petroleum, 3(4), 391–405, (2017). [CrossRef] [Google Scholar]
- B. Peng, J. Tang, J. Luo, P. Wang, B. Ding, K.C. Tam. Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of chemical engineering, 96(1), 91–100, (2018). [CrossRef] [Google Scholar]
- A.I. El-Diasty, A.M. Ragab. Applications of nanotechnology in the oil & gas industry: Latest trends worldwide & future challenges in Egypt. In North Africa Technical Conference and Exhibition. OnePetro, (2013) [Google Scholar]
- S.S. Hassani, M. Daraee, Z. Sobat. Advanced development in the upstream of petroleum industry using nanotechnology. Chinese Journal of Chemical Engineering, 28(6), 1483–1491, (2020). [CrossRef] [Google Scholar]
- H. Kumar, K. Kuca, S.K. Bhatia, K. Saini, A. Kaushal, R. Verma, D. Kumar. Applications of nanotechnology in sensor-based detection offoodborne, (2020). [Google Scholar]
- Pathogens. Sensors, 20(7), 1966. [Google Scholar]
- T. Vo-Dinh, B.M. Cullum, D.L. Stokes. Nanosensors and biochips: frontiers in biomolecular diagnostics. Sensors and Actuators B: Chemical, 74(1-3), 2–1, (2001). [CrossRef] [Google Scholar]
- O. Lazcka, F.J. Del Campo, F.X. Munoz. Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and bioelectronics, 22(7), 1205–1217 (2007). [CrossRef] [Google Scholar]
- G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki. Gubbins, M., Bowman, R.M. A review of high magnetic moment thin films for microscale and nanotechnology applications. Applied Physics Reviews, 3(1), 011301, (2016). [CrossRef] [Google Scholar]
- M. Shimomura, T. Sawadaishi. The bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Current opinion in colloid & interface science, 6(1), 11–16, (2001). [CrossRef] [Google Scholar]
- Royal Society and Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and prospects, royal society policy document, (2014). [Google Scholar]
- A.K. Asif, M.Z. Hasan, Application of nanotechnology in modern textiles: A review. International Journal of Current Engineering and Technology, 8(2), 227–231, (2018). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.