Open Access
Issue
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
Article Number 01080
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202339101080
Published online 05 June 2023
  1. R. Karehka. What is technology, what Meaning of technology, and its use? (2020) [Google Scholar]
  2. K. Aida. Encyclopaedia of Tissue Engineering and Regenerative Medicine. (2019). [Google Scholar]
  3. S.H. Matthew. Management of Emerging Public Health Issues and Risks. (2019) [Google Scholar]
  4. P. I Avinash, Mahendra. Nanoremediation, Microbial Biodegradation, and Bioremediation. (2014). [Google Scholar]
  5. G. Divesh. A literature review of Nanotechnology, Journal of emerging technologies and innovation research, Volume 6, Issue 1, Gaalgotias University, Uttar Pradesh. (2019). [Google Scholar]
  6. EPA. Environmental Pollution. (2007). [Google Scholar]
  7. D.W. Hobson, Industrial Biotechnology and Commodity Products, Comprehensive Biotechnology, 2nd edition. (2011). [Google Scholar]
  8. J. R Jeremy, Nanotechnology, 2nd edition. (2016). [Google Scholar]
  9. V. J Morris. Foods, Materials, Technologies, and Risks, Encyclopaedia of Food Safety. (2014) [Google Scholar]
  10. K. Jalaja, D. Naskar, S.C. Kundu, N.R. James. Potential of electrospun core-shell structured gelatin-chitosan nanofibers for biomedical applications. Carbohydrate polymers, 136, 1098–1107, (2016). [CrossRef] [PubMed] [Google Scholar]
  11. A.T. Guntner, V. Koren, K. Chikkadi, M. Righettoni, S.E. Pratsinis. E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sensors, 1(5), 528–535, (2016). [CrossRef] [Google Scholar]
  12. M.H. Zaid, F.A. Nuha, A.A. Aklas. Effects of solvents on the size of copper oxide particles fabricated using photolysis method, Asian Journal of Chemistry, pp: 223–225, (2018). [Google Scholar]
  13. Z. Xu, J. Lu, X. Zheng, B. Chen, Y. Luo, M.N Tahir, … X. Pan. A critical review of the applications and potential risks of emerging MoS2 nanomaterials. Journal of hazardous materials, 399, 123057, (2020). [CrossRef] [PubMed] [Google Scholar]
  14. H. Andrew. Nanotechnology: assessing the risks, Dotdash Meredith Publishing family, Investopedia, (2004). [Google Scholar]
  15. T. Aven. Quantitative risk assessment: the scientific platform. Cambridge university press. (2011). [Google Scholar]
  16. S. Buchler, K. Smith, G. Lawrence. Food risks, old and new: Demographic characteristics and perceptions of food additives, regulation and contamination in Australia. Journal of Sociology, 46(4), 353–374, (2010). [CrossRef] [Google Scholar]
  17. E.A. Crouch, R. Wilson. Risk/benefit analysis, (1982). [Google Scholar]
  18. E.J. Henley, H. Kumamoto. Probabilistic risk assessment and managementfor engineers and scientists. IEEE Press (2nd Edition), (1996). [Google Scholar]
  19. T. Raz, D. Hillson. A comparative review of risk management standards. Risk Management, 53–66, (2005). [CrossRef] [Google Scholar]
  20. S.D. Campbell. A review of backtesting and backtesting procedures, (2005). [Google Scholar]
  21. B. Âdâm, T. Göen, P.T. Scheepers, D. Adliene, B. Batinic, L.T. Budnik, Au From inequitable to sustainable e-waste processing for reduction of impact on human health and the environment. Environmental Research, 194, 110728, (2021). [CrossRef] [PubMed] [Google Scholar]
  22. OHS Nanotechnology, a new hazard, (2015). [Google Scholar]
  23. M.S. Bonnefoi, S.E. Belanger, D.J. Devlin, N.G. Doerrer, M.R. Embry, S. Fukushima, E.S. Harpur, R.N. Hines, M.P. Holsapple, J.H. Kim, J.S. MacDonald, Human and environmental health challenges for the next decade (2010-2020). Critical reviews in toxicology, 40(10), pp. 893–911, (2010). [CrossRef] [PubMed] [Google Scholar]
  24. Royal Society and Royal Academy of Engineering. Nanoscience and nanotechnologies: opportunities and prospects, royal society policy document. (2014). [Google Scholar]
  25. F.P. de Albuquerque, J.L. de Oliveira, V. Moschini-Carlos, L.F. Fraceto. An overview of the potential impacts of atrazine in aquatic environments: Perspectives for tailored solutions based on nanotechnology. Science of The Total Environment, 700, 134868, (2020). [CrossRef] [Google Scholar]
  26. B. Karn, T. Kuiken, M. Otto. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental health perspectives, 117(12), 1813–1831, (2009). [CrossRef] [PubMed] [Google Scholar]
  27. N. Ndlovu, T. Mayaya, C. Muitire, N. Munyengwa. Nanotechnology applications in crop production andfood systems. International Journal of Plant Breeding, 7(1), 624–634, (2020). [Google Scholar]
  28. T. Hofmann, G.V. Lowry, S. Ghoshal, N. Tufenkji, D. Brambilla, J.R. Dutcher, K.J. Wilkinson. Technology readiness and overcoming barriers to sustainably implement nanotechnology-enabled plant agriculture. Nature Food, 1(7), 416–425, (2020). [CrossRef] [Google Scholar]
  29. S.H. Khan. Green nanotechnology for the environment and sustainable development. In Green materials for wastewater treatment (pp. 13–46). Springer, Cham (2020). [CrossRef] [Google Scholar]
  30. G. Pandey, P. Jain. Assessing the nanotechnology on the grounds of costs, benefits, and risks. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1–1, (2020). [CrossRef] [Google Scholar]
  31. S. Keerthana, A. Kumar. Potential risks and benefits of zinc oxide nanoparticles: a systematic review. Critical Reviews in Toxicology, 50(1), 47–71, (2020). [CrossRef] [PubMed] [Google Scholar]
  32. B. Karn, T. Kuiken, M. Otto. Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environmental health perspectives, 117(12), 1813–1831, (2009). [CrossRef] [PubMed] [Google Scholar]
  33. K.A. Dunphy Guzman, M.R. Taylor, J.F. Banfield ACS Publications - (2006) pubs.acs.org [Google Scholar]
  34. Usman, M., Farooq, M., Wakeel, A., Nawaz, A., Cheema, S.A., ur Rehman, H., Sanaullah, M. (2020). Nanotechnology in agriculture: Current status, challenges, and future opportunities. Science of the Total Environment, 721, 137778. [CrossRef] [Google Scholar]
  35. M. Ghadimi, S. Zangenehtabar, S. Homaeigohar. An overview of the water remediation potential of nanomaterials and their ecotoxicological impacts. Water, 12(4), 1150, (2020). [CrossRef] [Google Scholar]
  36. A. Zielinska, F. Carreiro, A.M. Oliveira, A. Neves, B. Pires, D.N. Venkatesh, E.B. Souto. Polymeric nanoparticles: production, characterization, toxicology, and ecotoxicology. Molecules, 25(16), 3731, (2020). [CrossRef] [PubMed] [Google Scholar]
  37. C. Svendsen, L.A. Walker, M. Matzke, E. Lahive, S. Harrison, A. Crossley, V. Spurgeon. Key principles and operational practices for improved nanotechnology environmental exposure assessment. Nature Nanotechnology, 15(9), 731–742, (2020). [CrossRef] [PubMed] [Google Scholar]
  38. T. Tervonen, I. Linkov, J.R. Figueira, J Steevens, M Chappell, M Merad Journal of Nanoparticle Research - 2009 link.springer.com [Google Scholar]
  39. L. Zhang. Applications, Challenges, and Development of Nanomaterials and Nanotechnology. Journal of the Chemical Society of Pakistan, 42(5), (2020). [Google Scholar]
  40. T.J. Anchordoquy, Y. Barenholz, D. Boraschi, M. Chorny, P. Decuzzi, M.A. Dobrovolskaia, Z.S. Farhangrazi, D. Farrell, A. Gabizon, H. Ghandehari, B. Godin, N.M. La- Beck, J. Ljubimova, S.M. Moghimi, L. Pagliaro, J.H. Park, D. Peer, E. Ruoslahti, N.J. Serkova, D. Simberg. Mechanisms and Barriers in Cancer Nanomedicine: Addressing Challenges, Looking for Solutions, ACS Nano, 11, 12 (2017). [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.