Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 01007
Number of page(s) 9
Section Hydraulics of Structures, Hydraulic Engineering and Land Reclamation Construction
DOI https://doi.org/10.1051/e3sconf/202340101007
Published online 11 July 2023
  1. Belikov V.V., Aleksyuk A.I. Shallow water models in problems of river hydrodynamics / M.: RAS, 2020. ISBN 978-5-907366-10-7. P. 129-165. (in Russian) [Google Scholar]
  2. Belikov V.V., Militeev A.N. Two-layer mathematical model of catastrophic floods. // In collection Computing Technologies, vol. 1, No. 3. Novosibirsk: 1992, pp.167-174(in Russian) [Google Scholar]
  3. Belikov V.V., Aleksyuk A.I., Borisova N.M., Vasilieva E.S., Norin S.V., Rumyantsev A.B. Justification of Hydrological Safety Conditions in Residential Areas Using Numerical Modelling // Water Resources, 2018, Vol. 45, Suppl. 1, pp. S39–S49. © Pleiades Publishing, Ltd., 2018. doi: 10.1134/S0097807818050305 [CrossRef] [Google Scholar]
  4. Belikov V.V., Tretyukhina E.S., Kochetkov V.V., Zaitsev A.A., Savelyev R.A., Sosunov I.V. Computer simulation of catastrophic congestion flooding in the area of Lensk // In collection Safety of energy facilities. M.: Issue 12. JSC “NIIES”, 2004 (in Russian) [Google Scholar]
  5. Alabyan A. M., Lebedeva S.V. Flow dynamics in large tidal delta of the Northern Dvina River: 2D simulation // Journal of Hydroinformatics. 2018. Vol. 20. No 4. P. 798-814. doi: 10.2166/hydro.2018.051 [CrossRef] [Google Scholar]
  6. Belikov V.V., Borisova N.M., Aleksyuk A.I., Rumyantsev A.B., Glotko A.V., Shurukhin L.A. Hydraulic substantiation of the Bagaevskaya hydro complex project based on numerical hydrodynamic modeling // Power Technology and Engineering Vol. 52, No. 4, November, 2018, pp.372-388. DOI 10.1007/s10749-018-0962-9 [CrossRef] [Google Scholar]
  7. Abreu C.H.M., Barros M.L.C., Brito D.C., Teixeira M.R., Cunha A.C. Hydrodynamic Modeling and Simulation of Water Residence Time in the Estuary of the Lower Amazon River // Water. 2020. V. 12(3). 660. doi: 10.3390/w12030660 [CrossRef] [Google Scholar]
  8. Lu. S., Tong C., Lee D.-Y., Zheng J., Shen J., Zhang W., Yan Y. Propagation of tidal waves up in Yangtze Estuary during the dry season // Journal of Geophysical Research: Oceans. 2015. V. 120(9). P. 6445-6473. doi: 10.1002/2014JC010414 [CrossRef] [Google Scholar]
  9. Bolgov, M. V., Alekseevski, N. I., Gartsman, B. I., Georgievski, V. Yu., Dugina, I. O., Kim, B. I., Makhinov, A. N., and Shalygin, A. L.: The 2013 extreme flood within the Amur basin: analysis of flood formation, assessments and recommendations, Geogr. Nat. Resour., 36, 225–234, 2015. [CrossRef] [Google Scholar]
  10. Danilov-Danilyan, V. I., Gelfan, A. N., Motovilov, Y. G., and Kalugin, A. S.: Disastrous flood of 2013 in the Amur basin: genesis, recurrence assessment, simulation results, Water Resour., 41, 115–125, https://doi.org/10.1134/S0097807814020055, 2014. [CrossRef] [Google Scholar]
  11. Belikov, V. V., Krylenko, I. N., Alabyan, A. M., Sazonov, A. A., and Glotko, A. V.: Two-dimensional hydrodynamic flood modelling for populated valley areas of Russian rivers, Proc. IAHS, 370, 69–74, https://doi.org/10.5194/piahs-370-69-2015, 2015. [CrossRef] [Google Scholar]
  12. Krylenko, I., Belikov, V., Fingert, E., Golovlyov, P., Glotko, A., Zavadskii, A., Samokhin, M., and Borovkov, S.: Analysis of the impact of hydrotechnical construction on the Amur river near Blagoveshchensk and Heihe cities using a twodimensional hydrodynamic model, Water Resour., 45, 112–121, https://doi.org/10.1134/S0097807818050378, 2018 [CrossRef] [Google Scholar]
  13. Belikov V.V., Borisova N.M., Rumyantsev A.B., Bugaets A.N. Numerical hydrodynamic model of runoff-tidal currents in the Amur estuary // Collection of research papers All-Russian Conference “Water resources: New challenges and solutions”, Sochi 02-07 October 2017 – Novocherkassk: Lik, 2017. - 480-485 P. (in Russian) [Google Scholar]
  14. S. ROMANSKIY, E. VERBITSKAYA. The 2013 Amur River Flood: Operational Numerical Simulation of Prolonged Precipitation. Journal of the Meteorological Society of Japan. 2016 Vol. 94. Issue 2. P. 137-150 [Google Scholar]
  15. Yu, L.-L & XIA, Zi-qiang & Li, J.-K & CAI, Tao. (2013). Climate change characteristics of Amur River. Water Science and Engineering. 6. 131-144.. https://doi.org/10.21203/rs.3.rs-2203742/v1_ [Google Scholar]
  16. Gelfan, A. N.; Kalugin, A. S.; Motovilov, Yu. G. Assessing Amur Water Regime Variations in the XXI Century with Two Methods Used to Specify Climate Projections in River Runoff Formation Model. Water resources. 2018. Vol.45, 3, p. 307-317. [CrossRef] [Google Scholar]
  17. Glotko A.V., Aleksyuk A.I., Borisova N.M., Vasil’eva E.S., Fedorova T.A., Krasnopeev S.M., Nerov I.O., Belikov V.V. A numerical hydrodynamic 2D model of the Amur and Zeya Rivers and the Amur Liman // Cбoрник тeзисoв 4th Iinternational Conference on the Status and Future of the WORLDs LARGE RIVERS. Издaтeльствo VGU Moscow, Russia, 2021. C. 230-23 [Google Scholar]
  18. Peter Bauer-Gottwein, Elena Zakharova, Monica Coppo Frías et al. A hydraulic model of the Amur River informed with ICESat-2 elevation, 27 October 2022, PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-2203742/v1] [Google Scholar]
  19. Nerov I.O., Krasnopeev S.M., Bugaets A.N., Belikov V.V., Glotko A.V., Borisova N.M., Vasilyeva E.S., Krolevetskaya Yu.V. The experience of creating a digital relief model for hydrodynamic calculations in the Amur River basin. // Bulletin of the Far Eastern Branch of the Russian Academy of Sciences, 2021. No. 6 (220) pp. 45-55. [Google Scholar]
  20. Certificate of state registration of the computer program No. 2017660266. STREAM 2D CUDA software package for calculating currents, bottom deformations and pollution transfer in open streams using Computer Unified Device Architecture technologies (on NVIDIA GPUs) // Moscow, 2017 (in Russian) [Google Scholar]
  21. A.I. Aleksyuk, V.V. Belikov The uniqueness of the exact solution of the Riemann prob-lem for the shallow water equations with discontinuous bottom // Journal of Computational Physics, Vol. 390, pp. 232-248 (2019). [Google Scholar]
  22. Aleksyuk A.I., Malakhov M.A., Belikov V.V. The exact Riemann solver for the shallow water equations with a discontinuous bottom // Journal of Computational Physics. 2022, vol. 450, p. 110801, 2022, doi: 10.1016/j.jcp.2021.110801 [Google Scholar]
  23. Belikov V.V., Aleksyuk A.I. Shallow water models in problems of river hydrodynamics. Moscow: RAS, 2020. – 346 p. (in Russian) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.