Open Access
Issue
E3S Web of Conf.
Volume 401, 2023
V International Scientific Conference “Construction Mechanics, Hydraulics and Water Resources Engineering” (CONMECHYDRO - 2023)
Article Number 04065
Number of page(s) 8
Section Mechanization, Electrification of Agriculture and Renewable Energy Sources
DOI https://doi.org/10.1051/e3sconf/202340104065
Published online 11 July 2023
  1. Milovanov A.F. Strength of reinforced concrete structures during fire.Moscow (1998). [Google Scholar]
  2. Polevoda I.I., Zaynudinova N.V. Modeling of reinforced concrete reinforced concrete slabs without reinforcement with concrete in the program complex ANSYS. Vestnik Universiteta grazhdanskoy zashchity MChS Belarusi, Vol. 1(4), pp. 385-391. (2017). [Google Scholar]
  3. V. N. Demexin. Behavior of concrete structures in case of fire. St. Petersburg. Stroyprofil Vol.7(93) pp.10-12. (2011). [Google Scholar]
  4. Rizaev B. Sh., Abduraxmonov A.S. Features of physical and mechanical properties of thermal insulation materials for roofing. Vestnik Nauka i tvorchestva, pp.41-44 (2018). [Google Scholar]
  5. A.I. Adilkhodzhaev, I.A. Kadyrov, K.S. Umarov. Study of the porosity of cement stone with zeolite-containing filler and superplasticizer. Vestnik TashIIT Vol. 3, pp.15-22. (2020). [Google Scholar]
  6. A.I. Adilkhodzhaev, I.A. Kadyrov. Some aspects of the study of the structure of building materials by mercury porosimetry. Vestnik TashIIT. Vol. 2/3, pp. 3-7. (2018). [Google Scholar]
  7. A. I. Adilkhodzhaev, I. A. Kadyrov. On the influence of porosity on the frost resistance of concrete. In Proceedings of the XV Republican Scientific-Practical Conference "Application of innovative technologies in the integration of education, science and industry -an important factor in the development of the country", Samarkand, pp.102-104. (2018). [Google Scholar]
  8. Interstate standard 10180-2012. Interstate Council for Standardization, Metrology and Certification. Concrete. Methods for determining the strength of control samples. Standartinform, p.31. (2013). [Google Scholar]
  9. Interstate standard 20910-2019. Heat resistant concrete. Specifications. Interstate standard. Heat resistant concrete. Official publication. Moscow: Standartinform, (2019). [Google Scholar]
  10. Razzakov S. Zh., Kholmirzaev S. A., Abdurakhmonov A.S. Experimental study of heat-resistant reinforced concrete slab. Scientific and technical journal FerPI. No. 1, pp.71-78. (2020). [Google Scholar]
  11. Pavlenko N. V. Study of the relationship between structural and thermal and moisture characteristics on the example of foam concrete based on nanostructured binder. Vestnik SibADI. No. 6 (52). pp. 80-86. (2016). [Google Scholar]
  12. Enhancing the strength of pre-made foams for foam concrete applica-tions. Ailar Hajimohammadi, Tuan Ngo, Priyan Mendis. Cement and Concrete Composites. Vol. 87, pp.164-17. (2018). [Google Scholar]
  13. Aleksandrovsky S.V. Applied Methods of the Theory of Thermal Conductivity and Moisture Conductivity of Concrete. Sputnik Company, p.186. (2001). [Google Scholar]
  14. Gorlov Yu.P. Technology of heat-insulating and acoustic materials and products. Vyssh.shk., p. 384 (1989). [Google Scholar]
  15. M.R. Khadzhiev, V.Kh. Khadisov. Thermal engineering and physical-mechanical characteristics of lightweight ceramic concrete based on secondary aggregates from brick slaughter. II Modern building materials, technologies and structures: materials of the International scientific and technical conference dedicated to the 95th anniversary of the FGBOU VPO "GTNTU im. acad. M.D. Millioshtsikova, March 24-26, 2015 Grozny: FSUE "Publishing and Printing Complex "Groznensky Rabochiy", Vol. 2. pp. 257-263. (2015). [Google Scholar]
  16. S-A. Yu. Murtazaev, Z.Kh. Ismailova. The use of local industrial waste in fine-grained concrete. Building materials. No. 3. pp.57-61. (2008). [Google Scholar]
  17. Semchenko G.D. Ultra-lightweight corundum ceramics using sol-gel compositions // Glass and Ceramics. No. 5. pp. 15-18. (1997). [Google Scholar]
  18. Buzrukov Z., Yakubjanov I., Umataliev M. Features of the joint work of structures and pile foundations on loess foundations. In E3S Web of Conferences. Vol. 264. p. 02048. (2021). [CrossRef] [EDP Sciences] [Google Scholar]
  19. I. B. Sapaev, Sh. A. Mirsagatov, B. Sapaev and M. B. Sapaeva. Fabrication and Properties of nSi–pCdTe Heterojunctions. Inorganic Materials, Vol. 56, No. 1, pp.7-9. (2020). [CrossRef] [Google Scholar]
  20. Sh. A. Mirsagatov, I. B. Sapaev. Mechanism of Charge Transfer in Injection Photodetectors Based on the M(In)–n-CdS–p-Si–M (In) Structure. Physics of the Solid State, Vol. 57(4), pp. 659–674 (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.