Open Access
Issue
E3S Web of Conf.
Volume 402, 2023
International Scientific Siberian Transport Forum - TransSiberia 2023
Article Number 06019
Number of page(s) 9
Section Railway Innovations
DOI https://doi.org/10.1051/e3sconf/202340206019
Published online 19 July 2023
  1. Funke H. Rail Grinding. – Berlin: Transpress, 1986. – 153 p. [Google Scholar]
  2. Fan W., Liu Y., Li J. Development status and prospect of rail grinding technology for high speed railway // Journal of Mechanical Engineering. – 2018. – Vol.54, iss. 22. – P. 184–193. – DOI: 10.3901/JME.2018.22.184. [CrossRef] [Google Scholar]
  3. Schoch W. Grinding of Rails on High–Speed Railway Lines: A Matter of Great Importance // Rail Engineering International. 2007. – Vol. 36, iss. 1. – P. 6–8. [Google Scholar]
  4. Cuervo P., Santa J., Toro A. Correlations between wear mechanisms and rail grinding operations in a commercial railroad // Tribology International. – 2015. 82:265-273. https://doi.org/10.1016/j.triboint.2014.06.025. [CrossRef] [Google Scholar]
  5. Krishna V., Hossein-Nia S., Casanueva C., Stichel S. Long term rail surface damage considering maintenance interventions // 2020. 203462:460–461. https://doi.org/10.1016/j.wear.2020.203462 . [Google Scholar]
  6. Ding J., Lewis R., Beagles A., Wang J. Application of grinding to reduce rail side wear in straight track // 2018. 402–403:71-79. https://doi.org/10.1016/j.wear.2018.02.001 . [Google Scholar]
  7. Ilinykh A., Romanov A., Parahnenko I. Principles of Designing Asymmetric Rail Profiles // Networked Control Systems for Connected and Automated Vehicles. 2022. Lecture Notes in Networks and Systems, vol. 510. Springer, Cham. doi:10.1007/978-3-031-11051-1_5. p. 51-60. [Google Scholar]
  8. Zhou K., Ding H., Zhang S., Guo J., Q.Liu, Wang W. Modelling and simulation of the grinding force in rail grinding that considers the swing angle of the grinding stone // Tribology International. – 2019. Volume 137 . https://doi.org/10.1016/j.triboint.2019.05.012 . [Google Scholar]
  9. Zhou К., Ding Н., Wang R., Yang J., Guo J., Liu Q., Wang W. Experimental investigation on material removal mechanism during rail grinding at different forward speeds // Tribology International. – 2020. Volume 143. https://doi.org/10.1016/j.triboint.2019.106040. [Google Scholar]
  10. Study on the effect of grinding pressure on material removal behavior performed on a self–designed passive grinding simulator // Liu P., Zou W., Peng J., Song X., Xiao F / Applied Sciences. – 2021. – Vol. 11, iss. 9. – P. 4128. – DOI 10.3390/app11094128. [CrossRef] [Google Scholar]
  11. Binoj J., Shah V., Chhatwani B., Chhikara R. Influence of grinding on rail surface and profile // A review Vandhana International Private Limited, Okhla Industrial Area Phase – II, New Delhi. – 2022. 110020, India. https://doi.org/10.1016/j.matpr.2022.12.216 . [Google Scholar]
  12. Murali, G., Abid, S.R., Amran, M., Fediuk, R., Vatin, N., Karelina, M. Combined effect of multi-walled carbon nanotubes, steel fibre and glass fibre mesh on novel two-stage expanded clay aggregate concrete against impact loading (2021) Crystals, 11 (7), art. no. 720, DOI: 10.3390/cryst11070720 [Google Scholar]
  13. Jeong W., Shin J. Grinding effect analysis according to control variables of compact rail surface grinding machine // Journal of the Korean Society for Railway. – 2020. – Vol. 23, iss. 7. – P. 688–695. – DOI 10.7782/JKSR.2020.23.7.688. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.