Open Access
Issue
E3S Web of Conf.
Volume 406, 2023
2023 9th International Conference on Energy Materials and Environment Engineering (ICEMEE 2023)
Article Number 02020
Number of page(s) 6
Section Energy Conservation Technology and Energy Sustainability
DOI https://doi.org/10.1051/e3sconf/202340602020
Published online 31 July 2023
  1. Siddiqui M, Jayanti S, Swaminathan T. (2012) CFD analysis of dense gas dispersion in indoor environment for risk assessment and risk mitigation [J]. Journal of Hazardous Materials, 209-210: 177-185. https://pubmed.ncbi.nlm.nih.gov/22301078/ [CrossRef] [PubMed] [Google Scholar]
  2. Jurelionis A, Gagytė L, Prasauskas T, et al. (2015) The impact of the air distribution method in ventilated rooms on the aerosol particle dispersion and removal: The experimental approach [J]. Energy and Buildings, 86: 305-313. https://doi.org/10.1016/j.enbuild.2014.10.014 [CrossRef] [Google Scholar]
  3. Chen Y L, Wen J. (2010) Comparison of sensor systems designed using multizone, zonal, and CFD data for protection of indoor environments [J]. Building and Environment, 45(4): 1061-1071. https://doi.org/10.1016/j.buildenv.2009.10.015 [CrossRef] [Google Scholar]
  4. Chen Y L, Wen J. (2012) The selection of the most appropriate airflow model for designing indoor air sensor systems [J]. Building and Environment, 50: 34-43. https://doi.org/10.1016/j.buildenv.2011.10.007 [CrossRef] [Google Scholar]
  5. Chen Y L, Wen J. (2008) Sensor system design for building indoor air protection [J]. Building and Environment, 43(7): 1278-1285. https://doi.org/10.1016/j.buildenv.2007.03.011 [CrossRef] [Google Scholar]
  6. Abbassi R, Dadashzadeh M, Khan F, et al. (2012) Risk-based prioritisation of indoor air pollution monitoring using computational fluid dynamics [J]. Indoor and Built Environment, 21(5): 663-673. https://journals.sagepub.com/doi/10.1177/1420326X11428164 [CrossRef] [Google Scholar]
  7. Mohammademad A, Morteza I, Tibor K. (2023) Measurements and computational fluid dynamics investigation of the indoor radon distribution in a typical naturally ventilated room.[J]. Scientific reports, 13(1). https://pubmed.ncbi.nlm.nih.gov/36739299/ [Google Scholar]
  8. Cheng J.C.P., Kwok H.H.L., Li A.T.Y., Tong J.C.K., Lau A.K.H. (2021) Sensitivity analysis of influence factors on multi-zone indoor airflow CFD simulation. J. Sci. Total Environ, 761, 143298, https://doi.org/10.1016/j.scitotenv.2020.143298 [CrossRef] [Google Scholar]
  9. Fontanini A D, Vaidya U, Ganapathysubramanian B. (2016) A methodology for optimal placement of sensors in enclosed environments: A dynamical systems approach [J]. Building & Environment, 100: 145-161. https://doi.org/10.1016/j.buildenv.2016.02.003 [CrossRef] [Google Scholar]
  10. Kyriacou A, Michaelides M P, Eliades D G, et al. (2019) COMOB: A MATLAB toolbox for sensor placement and contaminant event monitoring in multi-zone buildings [J]. Building and Environment, 154: 348-361. https://doi.org/10.1016/j.buildenv.2019.02.013 [CrossRef] [Google Scholar]
  11. Cheng J.C.P., Kwok H.H.L., Li A.T.Y., Tong J.C.K., Lau A.K.H. (2022) BIM-supported sensor placement optimization based on genetic algorithm for multi-zone thermal comfort and IAQ monitoring[J]. Building and Environment, 216. https://doi.org/10.1016/j.buildenv.2022.108997 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.