Open Access
Issue
E3S Web Conf.
Volume 411, 2023
VI International Conference on Actual Problems of the Energy Complex and Environmental Protection (APEC-VI-2023)
Article Number 02037
Number of page(s) 5
Section Ecology, Environmental Protection and Conservation of Biological Diversity
DOI https://doi.org/10.1051/e3sconf/202341102037
Published online 10 August 2023
  1. Z. Wang, K. Lu, X. Liu, Y. Zhu, C. Liu, Comparative functional genome analysis reveals the habitat adaptation and biocontrol characteristics of plant growth-promoting bacteria in NCBI databases, Microbiol. Spectr., 0500722 (2023) [Google Scholar]
  2. A. Ramette, M. Frapolli, M. Fischer-Le Saux, C. Gruffaz, J.M. Meyer, G. Défago, L. Sutra, Y. Moenne-Loccoz, Pseudomonas protegens sp. nov., widespread plantprotecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin, Syst. Appl. Microbiol, 34, 180–188 (2011) [CrossRef] [Google Scholar]
  3. Q. Zhao, J. Cao, X. Cai, J. Wang, F. Kong, D. Wang, J. Wang, Antagonistic activity of volatile organic compounds produced by acid-tolerant Pseudomonas protegens CLP-6 as biological fumigants to control tobacco bacterial wilt caused by Ralstonia solanacearum, Appl. Environ. Microbiol., 89, 0189222 (2023) [Google Scholar]
  4. Y. Huang, J. Liu, J. Li, X. Shan, Y. Duan, Endophytic bacterium Pseudomonas protegens suppresses mycelial growth of Botryosphaeria dothidea and decreases its pathogenicity to postharvest fruits, Front. Microbiol., 13, 1069517 (2022) [CrossRef] [Google Scholar]
  5. L. Ortega, K.A. Walker, C. Patrick, Y. Wamishe, A. Rojas, C.M. Rojas, Harnessing Pseudomonas protegens to control bacterial panicle blight of rice, Phytopathology, 110, 1657–1667 (2020) [CrossRef] [PubMed] [Google Scholar]
  6. M.P. Castro Tapia, R.P. Madariaga Burrows, B. Ruiz Sepulveda, M. Vargas Concha, C. Vera Palma, E.A. Moya-Elizondo, Antagonistic activity of Chilean strains of Pseudomonas protegens against fungi causing crown and root rot of wheat (Triticum aestivum L.), Front. Plant Sci., 11, 951 (2020) [CrossRef] [Google Scholar]
  7. X. Lai, D. Niroula, M. Burrows, X. Wu, Q. Yan, Identification and characterization of bacteria-derived antibiotics for the biological control of pea Aphanomyces root rot, Microorganisms, 10, 1596 (2022) [CrossRef] [PubMed] [Google Scholar]
  8. M. Bakaeva, S. Chetverikov, M. Timergalin, A. Feoktistova, T. Rameev, D. Chetverikova, A. Kenjieva, S. Starikov, D. Sharipov, G. Hkudaygulov, PGP-bacterium Pseudomonas protegens improves bread wheat growth and mitigates herbicide and drought stress, Plants (Basel), 11, 3289 (2022) [CrossRef] [PubMed] [Google Scholar]
  9. E.W. Stutz, G. Defago, H. Kern, Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco, Phytopathology, 76, 181–185 (1986) [CrossRef] [Google Scholar]
  10. X. Wang, M. Wang, D. Tang, W. Wang, Complete genome sequence of plant growthpromoting rhizobacterium Pseudomonas protegens SN15-2, Microbiol. Resour. Announc., 9, 01548–19 (2020) [Google Scholar]
  11. K. Takeuchi, N. Noda, N. Someya, Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species, PLoS One, 9, 93683 (2014) [Google Scholar]
  12. C.K. Stover, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen, Nature, 406, 959–964 (2000) [CrossRef] [PubMed] [Google Scholar]
  13. B. Liu, D. Zheng, S. Zhou, L. Chen, J. Yang, VFDB 2022: a general classification scheme for bacterial virulence factors, Nucleic Acids Res., 50, 912–917 (2022) [Google Scholar]
  14. M. Feldman, R. Bryan, S. Rajan, L. Scheffler, S. Brunnert, H. Tang, A. Prince, Role of flagella in pathogenesis of Pseudomonas aeruginosa pulmonary infection, Infect. Immun., 66, 43–51 (1998) [CrossRef] [PubMed] [Google Scholar]
  15. G.A. O'Toole, R. Kolter, Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development, Mol. Microbiol., 30, 295–304 (1998) [CrossRef] [Google Scholar]
  16. A.P. Stapper, G. Narasimhan, D.E. Ohman, J. Barakat, M. Hentzer, S. Molin, A. Kharazmi, N. Hoiby, K. Mathee, Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation, J. Med. Microbiol., 53, 679–690 (2004) [CrossRef] [PubMed] [Google Scholar]
  17. B.C. Jeong, C. Hawes, K.M. Bonthrone, L.E. Macaskie, Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin, Microbiology (Reading), 143, 2497–2507 (1997) [CrossRef] [Google Scholar]
  18. K. Poole, G.A. McKay, Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome, Front. Biosci., 8, 661–686 (2003) [Google Scholar]
  19. P. Basso, M. Ragno, S. Elsen, E. Reboud, G. Golovkine, S. Bouillot, P. Huber, S. Lory, E. Faudry, I. Attree, Pseudomonas aeruginosa pore-forming exolysin and type IV pili cooperate to induce host cell lysis, mBio, 8, 02250–16 (2017) [CrossRef] [Google Scholar]
  20. R.M. Ostroff, A.I. Vasil, M.L. Vasil, Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa, J. Bacteriol., 172, 59155923 (1990) [CrossRef] [PubMed] [Google Scholar]
  21. A. Kharazmi, Mechanisms involved in the evasion of the host defence by Pseudomonas aeruginosa, Immunol. Lett., 30, 201–205 (1991) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.