Open Access
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 02016
Number of page(s) 10
Section Agricultural Engineering and Mechanization
Published online 11 August 2023
  1. A. I. Orlov, Artificial intelligence: non—numerical statistics: textbook (M AI Pi Ar Media), ISBN 978-5-4497-1435-0, 446 (2022) [Google Scholar]
  2. A. V. Berezin, et al, IOP Conf. Ser.: Mater Sci Eng, 1023, 012005 (2021) doi:10.1088/1757-899X/1023/1/012005 [CrossRef] [Google Scholar]
  3. I. V. Gadolina, et al., J Phys: Conf Ser, 1990, 012020 (2021) doi:10.1088/1742-6596/1990/1/012020 [CrossRef] [Google Scholar]
  4. A. Ghaida, A. Baklizi, Prediction of future failures in the log-logistic distribution based on hybrid censored data Int J Syst Assur Eng Manag, 13, 1598–1606 (2022) [Google Scholar]
  5. T. Lee, et al., Position Fault Detection for UAM Motor with Seamless Transition IEEE Access, 9, 168042-168051 (2021) doi: 10.1109/ACCESS.2021.3134911. [Google Scholar]
  6. D. I. Chulkov, et al., A study of physical and mechanical characteristics of polymer Composite materials by ultrasonic technique IOP Conf Ser Mater Sci Eng, 934, 012031 (2020) [Google Scholar]
  7. A. S. Boychuk, et al., Ultrasonic control of samples in the process of development and testing of new grades of carbon fiber Electronic scientific journal Proceedings of VIAM 12 (2020) [Google Scholar]
  8. J. Liang, et al., Multi-mineral segmentation of micro-tomographic images using a convolutional neural network Computers & Geoscience, ISSN 0098-3004, 168, 105217 (2022) [Google Scholar]
  9. M. Lyubimova, T. Knyazeva, Processing of tomographic images by means of wavelet analysis Journal of New Medical Technologies. eJournal, 1, 1-4 (2014) DOI: [Google Scholar]
  10. P. Lamary, et al., X-ray tomographic image post-processing and a new 2D LBM simulation for the determination of the porosity and the static airflow resistivity of an acoustic fibrous material Applied Acoustics Elsevier, 169, 107452 (2020) doi:10.1016/j.apacoust.2020.107452ff.ffhal-03103044f [Google Scholar]
  11. S. J. Ha, et al., Parameterization of the representative sizes of microstructural features in rocks using 3D X-ray computed tomographic images Computers & Geosciences, ISSN 0098-3004, 144, 104590 (2020) [Google Scholar]
  12. M. N. Zakharov, A. M. Sampiev, Regulation of the production capacity of the natural gas liquefaction complex using a fuzzy control model Equipment and technologies for the oil and gas complex, 2, 59 (2016) [Google Scholar]
  13. V. E. Parfenova, Fuzzy regression modeling in tasks of management of agrarian production Innovations, 7, 249 (2019) doi 10.26310/2071-3010.2019.249.7.013 [Google Scholar]
  14. S. Gong, et al., Distributed fuzzy maximum-censored mean level detector-constant false alarm rate detector based on voting fuzzy fusion rule IET Radar Sonar Navig, 9, 1055-1062 (2015) [Google Scholar]
  15. S. Y. Miin, S. L. Tzu, Fuzzy least-squares linear regression analysis for fuzzy input– output data Fuzzy Sets and Systems, ISSN 0165-0114, 126(3), 389-399 (2002) [Google Scholar]
  16. A. Żyluk, K. Kuźma, N. Grzesik, M. Zieja, J. Tomaszewska, Fuzzy Logic in Aircraft Onboard Systems Reliability Evaluation—A New Approach Sensors, 21(23), 7913 (2021) [Google Scholar]
  17. B. Goldfarb, C. M. Pardoux, Exploring series of multivariate censored temporal data through fuzzy coding and correspondence analysis Stat Med, 30;25, 10, 1741-50 (2006) doi: 10.1002/sim.2305. PMID: 16143983. [Google Scholar]
  18. G. G. David, C. S. Mario, P. Rolando, F. H. Bernardo, Z. S. Ricardo, Fuzzy reliability analysis with only censored data Engineering Applications of Artificial Intelligence, ISSN 0952-1976, 32, 151-159 (2014) [Google Scholar]
  19. L. Sánchez, I. Couso, Obtaining fuzzy rules from interval-censored data with genetic algorithms and a random sets-based semantic of the linguistic labels Soft Comput, 15, 1945–1957 (2011) [Google Scholar]
  20. J. A. Zak, Decision making under conditions of fuzzy and blurred data. Fuzzy technologies. Moscow, URSS, ISBN 978-5-397-03451-7, 348 (2012) [Google Scholar]
  21. C. Wenbin, et al., Very High Cycle Fatigue (VHCF) Characteristics of Carbon Fiber Reinforced Plastics (CFRP) under Ultrasonic Loading Materials, 13(4), 908 (2020) doi:10.3390/ma13040908 [Google Scholar]
  22. M. Kato, M. Takahashi, Evaluation of porosity and its variation in porous materials using microfocus x-ray computed tomography considering the partial volume effect Materials Transactions, 9, 1678–1685 (2013) doi:10.2320/MATERTRANS.M-M2013813 [Google Scholar]
  23. S. Kirkpatrick, et al., Optimization by Simulated Annealing Science, 220(4598), 671–680 (1983) doi: 10.1126/science.220.4598.671. [Google Scholar]
  24. A. Mikhaylova, et al., Radiation control of blanks manufactured using additive technology by digital radiography Zavod Lab Diagn Mater, 88(10), 48-53 (2022) doi: 10.26896/1028-6861-2022-88-10-48-3 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.