Open Access
Issue
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 02019
Number of page(s) 8
Section Agricultural Engineering and Mechanization
DOI https://doi.org/10.1051/e3sconf/202341302019
Published online 11 August 2023
  1. B. Barhoumi, S. G. Sander, I. Tolosa, A review on per-and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials Environmental Research, 206, 112595 (2022) DOI: 10.1016/j.envres.2021.112595. [Google Scholar]
  2. T. D. Moshood, G. Nawanir, F. Mahmud, F. Mohamad, M. H. Ahmad, A. AbdulGhani Biodegradable plastic applications towards sustainability: a recent innovations in the green product Cleaner Engineering and Technology, 6, 100404 (2022) DOI: 10.1016/j.clet.2022.100404. [Google Scholar]
  3. H. Y. Sintim, A. I. Bary, D. G. Hayes, M. E. English, S. M. Schaeffer, C. A. Miles, A. Zelenyuk, K. Suski, M. Flury, Release of micro-and nanoparticles from biodegradable plastic during in situ composting Science of The Total Environment, 675, 686-693 (2019) DOI: 10.1016/j.scitotenv.2019.04.179 [Google Scholar]
  4. H. Y. Sintim, A. I. Bary, D. G. Hayes, L. C. Wadsworth, M. B. Anunciado, M. English, S. Bandopadhyay, S. M. Schaeffer, J. M. DeBruyn, C. A. Miles, J. P. Reganold, M. Flury, In situ degradation of biodegradable plastic mulch films in compost and agricultural soils Science of The Total Environment, 727, 138668 (2020) DOI: 10.1016/j.scitotenv.2020.138668 [Google Scholar]
  5. C. Borrowman, P. Johnston, R. Adhikari, K. Saito, A. Patti, Environmental degradation and efficacy of a sprayable, biodegradable polymeric mulch Polymer Degradation and Stability, 175, 109126 (2020) DOI: 10.1016/j.polymdegradstab.2020.109126 [CrossRef] [Google Scholar]
  6. C. Miles, L. DeVetter, S. Ghimire, D. G. Hayes, Suitability of biodegradable plastic mulches for organic and sustainable agricultural production systems Hortscience, 52(1), 10-15 (2017) DOI: 10.21273/HORTSCI11249-16 [Google Scholar]
  7. R. Muthuraj, M. Misra, A. K. Mohanty, Biodegradable compatibilized polymer blends for packaging applications: a literature review Journal of Applied Polymer Science, 135(24), 45726 (2018) DOI: 10.1002/APP.45726 [Google Scholar]
  8. Y. Tertyshnaya, S. Karpova, M. Podzorova, A. Khvatov, M. Moskovskiy, Thermal properties and dynamic characteristics of electrospun polylactide/natural rubber fibers during disintegration in soil Polymers, 14, 1058 (2022) DOI: 10.3390/polym14051058 [Google Scholar]
  9. C. Aumnate, P. Potiyaraj, C. Saengow, A. J. Giacomin, Reinforcing polypropylene with graphene-polylactic acid microcapsules for fused-filament fabrication Materials and Design, 98, 109329 (2021) DOI: 10.1016/j.matdes.2020.109329 [Google Scholar]
  10. K. P. Rajan, A. Gopanna, E. A. M. Abdelghani, S. P. Thomas, Halloysite nanotubes (HNT) as reinforcement for compatibilized blends of polypropylene (PP) and polylactic acid (PLA) Journal of Polymer Research, 28, 374 (2021) DOI: 10.1007/s10965-021-02738-0. [Google Scholar]
  11. L.-T. Lim, R. Auras, M. Rubino, Processing technologies for poly(lactic acid) Progress in Polymer Science, 33, 820 (2008) doi: 10.1016/j.progpolymsci.2008.05.004 [CrossRef] [Google Scholar]
  12. M. A. Elsawy, K.-H. Kim, J.-W. Park, A. Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites Renewable and Sustainable Energy Reviews, 79, 1346-1352 (2017) doi: 10.1016/j.rser.2017.05.143 [CrossRef] [Google Scholar]
  13. Y. Tertyshnaya, H. Jobelius, A. Olkhov, L. Shibryaeva, A. Ivanitskikh, Polylactide Fiber Materials and Their Application in Agriculture Key Engineering Materials, 910, 623-629 (2022) doi: 10.4028/p-864orl [Google Scholar]
  14. P. Kurtycz, E. Karwowska, T. Ciach, A. Olszyna, A. Kunicki, Biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder prepared by electrospinning technique—Antibacterial properties Fibers and Polymers, 14, 1248-1254 (2013) DOI: 10.1007/s12221-013-1248-3 [Google Scholar]
  15. V. K. Holm, S. Ndoni, J. Risbo, The stability of poly(lactic acid) packaging films as influenced by humidity and temperature Journal of Food Science, 71, 40-44, (2006) doi: 10.1111/j.1365-2621.2006.tb08895.X [Google Scholar]
  16. N. K. Kalita, N. A. Damare, D. Hazarika, P. Bhagabati, A. Kalamdhad, V. Katiyar, Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator Environmental Challenges, 3, 100067 (2021) DOI: 10.1016/J.ENVC.2021.100067 [Google Scholar]
  17. A. Kulkarni, H. Dasari, Current status of methods used in degradation of polymers: a review Materials Science, 144, 02023, (2018) doi:10.1051/matecconf/201714402023 [Google Scholar]
  18. Y.-X. Weng, Y.-J. Jin, Q.-Y. Meng, L. Wang, M. Zhang, Y.-Z. Wang, Biodegradation behavior of poly(butylene adipate-coterephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions Polymer Testing, 32, 918-926 (2013) doi: 10.1016/j.polymertesting.2013.05.001 [Google Scholar]
  19. Y. Li, Sh. Qiu, J. Sun, Y. Ren, Sh. Wang, X. Wang, W. Wang, H. Li, B. Fei, X. Gu, Sh. Zhang, A new strategy to prepare fully bio-based poly(lactic acid) composite with high flame retardancy, UV resistance, and rapid degradation in soil Chemical Engineering Journal, 428, 131979 (2022) DOI: 10.1016/j.cej.2021.131979 [Google Scholar]
  20. Y. V. Tertyshnaya, S. G. Karpova, A. A. Popov, Effect of aqueous medium on the molecular mobility of polylactide Russian Journal of Physical Chemistry B, 11, 531-537 (2017) DOI: 10.1134/S1990793117030241 [Google Scholar]
  21. Y. Huang, C. Zhang, Y. Pan, Y. Zhou, L. Jiang, Y. Dan, Effect of NR on the hydrolytic degradation of PLA Polymer Degradation and Stability, 9, 943-950 (2013) DOI: 10.1016/j.polymdegradstab.2013.02.018 [CrossRef] [Google Scholar]
  22. Y. V. Tertyshnaya, A. V. Khvatov, A. A. Popov, Mechanical Properties of Composites Based on Polylactide and Poly-3-Hydroxybutyrate with Rubbers Russian Journal of Physical Chemistry B, 16(1), 162-166 (2022) DOI: 10.1134/S1990793122010304 [Google Scholar]
  23. E. Olewnik-Kruszkowska, I. Koter, J. Skopińska-Wiśniewska, J. Richert, Degradation of polylactide composites under UV irradiation at 254nm Journal of Photochemistry and Photobiology A, 311, 144-153 (2015) doi: 10.1016/j.jphotochem.2015.06.029 [Google Scholar]
  24. K. Pongtanayut, C. Thongpin, O. Santawitee, The Effect of Rubber on Morphology, Thermal Properties and Mechanical Properties of PLA/NR and PLA/ENR Blends Energy Procedia, 34, 888-897 (2013) doi: 10.1016/j.egypro.2013.06.826 [Google Scholar]
  25. P. Rychter, K. Lewicka, M. Pastusiak, M. Doma´nski, P. Dobrzy´nski, PLGA–PEG terpolymers as a carriers of bioactive agents, influence of PEG blocks content on degradation and release of herbicides into soil Polymer Degradation and Stability, 61, 95–107 (2019) doi: 10.1016/j.polymdegradstab.2019.01.002 [Google Scholar]
  26. K. Lewicka, P. Dobrzy´ nski, P. Rychter, PLAGA-PEG-PLAGA Terpolymer-Based Carriers of Herbicides for Potential Application in Environment-Friendly Controlled Release Systems of Agrochemicals. Materials, 13, 2778 (2020) DOI: 10.3390/ma131227 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.