Open Access
E3S Web Conf.
Volume 413, 2023
XVI International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness - INTERAGROMASH 2023”
Article Number 02018
Number of page(s) 10
Section Agricultural Engineering and Mechanization
Published online 11 August 2023
  1. J. R. White, Polymer ageing: physics, chemistry or engineering? Time to reflect Comptes Rendus Chimie, 9, 1396-1408 (2006) DOI: 10.1016/J.CRCI.2006.07.008 [CrossRef] [Google Scholar]
  2. A. Fairbrother, H. C. Hsueh, J. H. Kim, D. Jacobs, L. Perry, D. Goodwin, C. White, S. Watson, L. P. Sung, Temperature and light intensity effects on photodegradation of high-density polyethylene Polymer Degradation and Stability, 165, 153-160 (2019) DOI: 10.1016/J.POLYMDEGRADSTAB.2019.05.002 [Google Scholar]
  3. Y. U. V. Tertyshnaya, N. S. Levina, A. A. Popov, M. N. Moskovskii, A. Y. Izmailov, Hydrolytic Destruction of Agrofiber Made of Natural Polymers Fibre Chemistry, 51, 117-120 (2019) DOI: 10.1007/s10692-019-10053-0 [Google Scholar]
  4. J. Avossa, R. Paolesse, C. di Natale, E. Zampetti, G. Bertoni, F. de Cesare, G. Scarascia-Mugnozza, A. Macagnano, Electrospinning of Polystyrene/Polyhydroxybutyrate Nanofibers Doped with Porphyrin and Graphene for Chemiresistor Gas Sensors Nanomaterials, 9, 280 (2019) DOI: 10.3390/nano9020280 [Google Scholar]
  5. R. Tabassum, R. Kant, Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities Sensors and Actuators B-chemical, 310, 127813 (2020) DOI: 10.1016/j.snb.2020.127813 [Google Scholar]
  6. R. Muthuraj, M. Misra, A. K. Mohanty, Studies on mechanical, thermal, and morphological characteristics of biocomposites from biodegradable polymer blends and natural fibers Biocomposites: Design and Mechanical Performance, 93-140 (2015) DOI: 10.1016/B978-1-78242-373-7.00014-7 [Google Scholar]
  7. S. M. Bhasney, P. Bhagabati, A. Kumar, V. Katiyar, Morphology and crystalline characteristics of polylactic acid [PLA], linear low density polyethylene [LLDPE]/microcrystalline cellulose [MCC] fiber composite Composites Science and Technology, 171, 54-61 (2019) DOI: 10.1016/J.COMPSCITECH.2018.11.028 [Google Scholar]
  8. V. P. Ranjan, S. Goel, Recyclability of polypropylene after exposure to four different environmental conditions Resources Conservation and Recycling, 169, 105494 (2021) DOI: 10.1016/J.RESCONREC.2021.105494 [Google Scholar]
  9. F. Schmidt, Y. S. Zimmermann, G. A. dos Reis Benatto, B. A. Kolvenbach, A. Schäffer, F. C. Krebs, E. D. van Hullebusch, M. Lenz, Biodeterioration Affecting Efficiency and Lifetime of Plastic-Based Photovoltaics Joule 4, 2088-2100 (2020) DOI: 10.1016/J.JOULE.2020.08.015 [Google Scholar]
  10. B. Fayolle, E. Richaud, X. Colin, J. Verdu, Review: Degradation-induced embrittlement in semi-crystalline polymers having their amorphous phase in rubbery state Journal of Materials Science, 43, 6999-7012 (2008) DOI: 10.1007/s10853-008-3005-3 [Google Scholar]
  11. S. A. Jabarin, E. A. Lofgren, Photooxidative effects on properties and structure of high-density polyethylene Journal of Applied Polymer Science, 53, 411-423 (1994) DOI:10.1002/APP.1994.070530404 [Google Scholar]
  12. P. K. Roy, P. Surekha, C. Rajagopal, V. Choudhary, Degradation behavior of linear low-density polyethylene films containing prooxidants under accelerated test conditions Journal of Applied Polymer Science, 108, 2726-2733 (2008) DOI: 10.1002/APP.27889 [Google Scholar]
  13. P. K. Roy, P. Surekha, R. Raman, C. Rajagopal, Investigating the role of metal oxidation state on the degradation behaviour of LDPE Polymer Degradation and Stability, 94, 1033-1039 (2009) doi: 10.1016/j.polymdegradstab.2009.04.025 [Google Scholar]
  14. T. Ojeda, A. Freitas, K. Birck, E. Dalmolin, R. Jacques, F. Bento, F. Camargo, Degradability of linear polyolefins under natural weathering Polymer Degradation and Stability, 96, 703-707 (2011) doi: 10.1016/j.polymdegradstab.2010.12.004 [CrossRef] [Google Scholar]
  15. M. Gardette, A. Perthue, J. L. Gardette, T. Janecska, E. Földes, B. Pukánszky, S. Therias, Photo-and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content Polymer Degradation and Stability, 98, 2383-2390 (2013) doi: 10.1016/j.polymdegradstab.2013.07.017 [Google Scholar]
  16. J. F. Heacock, F. B. Mallory, F. P. Gay, Photodegradation of polyethylene film Journal of Polymer Science Part A Polymer Chemistry, 6, 2921-2934 (1968) DOI: 10.1002/POL.1968.150061019 [CrossRef] [Google Scholar]
  17. Y. V. Tertyshnaya, S. G. Karpova, M. V. Podzorova, A. V. Khvatov, M. N. Moskovskiy, Thermal Properties and Dynamic Characteristics of Electrospun Polylactide, Natural Rubber Fibers during Disintegration in Soil Polymers, 14, 1058 (2022) DOI: 10.3390/polym14051058 [Google Scholar]
  18. Y. V. Tertyshnaya, M. V. Podzorova, Degradation of Polylactide–Polyethylene Blends in Aqueous Media Russian Journal of Applied Chemistry, 94, 639-946 (2021) DOI: 10.1134/S1070427221050128 [Google Scholar]
  19. S. M. Bhasney, R. Patwa, A. Kumar, V. Katiyar, Plasticizing effect of coconut oil on morphological, mechanical, thermal, rheological, barrier, and optical properties of poly(lactic acid): A promising candidate for food packaging Journal of Applied Polymer Science, 134, 45390 (2017) DOI: 10.1002/APP.45390 [Google Scholar]
  20. R. Avolio, R. Castaldo, M. Avella, M. Cocca, G. Gentile, S. Fiori, M. E. Errico, PLA-based plasticized nanocomposites: Effect of polymer/plasticizer/filler interactions on the time evolution of properties Composites Part B Engineering, 152, 267-274 (2018) doi: 10.1016/j.compositesb.2018.07.011 [Google Scholar]
  21. K. Pongtanayut, C. Thongpin, O. Santawitee, The Effect of Rubber on Morphology, Thermal Properties and Mechanical Properties of PLA/NR and PLA/ENR Blends Energy Procedia, 34, 888-897 (2013) doi: 10.1016/j.egypro.2013.06.826 [Google Scholar]
  22. C. Xu, D. Yuan, L. Fu, Y. Chen, Physical blend of PLA/NR with co-continuous phase structure: Preparation, rheology property, mechanical properties and morphology Polymer Testing, 37, 94-101 (2014) doi: 10.1016/j.polymertesting.2014.05.005 [Google Scholar]
  23. T. Talbamrung, C. Kasemsook, W. Sangtean, S. Wachirahuttapong, C. Thongpin, Effect of Peroxide and Organoclay on Thermal and Mechanical Properties of PLA in PLA/NBR Melted Blend Energy Procedia, 89, 274-281 (2016) doi:10.1016/j.egypro.2016.05.035 [Google Scholar]
  24. S. Mahapram, S. Poompradub, Preparation of natural rubber (NR) latex/low density polyethylene (LDPE) blown film and its properties Polymer Testing, 30, 716-725 (2011) doi: 10.1016/j.polymertesting.2011.06.006 [Google Scholar]
  25. M. Tsuji, T. Shimizu, S. Kohjiya, TEM Studies on Thin Films of Natural Rubber and Polychloroprene Crystallized under Molecular Orientation II. Highly Prestretched Thin Films Polymer Journal, 32, 505-512 (2000) doi: 10.1295/polymj.32.505 [Google Scholar]
  26. N. K. Kalita, N. A. Damare, D. Hazarika, P. Bhagabati, A. Kalamdhad, V. Katiyar, Biodegradation and characterization study of compostable PLA bioplastic containing algae biomass as potential degradation accelerator Environmental Challenges, 3, 100067 (2021) doi: 10.1016/j.envc.2021.100067 [Google Scholar]
  27. M. V. Podzorova, Y. V. Tertyshnaya, Degradation of Polylactide—Polyethylene Binary Blends in Soil Russian Journal of Applied Chemistry, 92, 767–774 (2019) doi: 10.1134/s1070427219060065 [Google Scholar]
  28. J. R. Haines, M. Alexander, Microbial Degradation of High-Molecular-Weight Alkanes Applied Microbiology, 28(6), 1084-1085 (1974) doi: 10.1128/am.28.6.1084-1085.1974 [Google Scholar]
  29. E. Mastalygina, I. Varyan, N. Kolesnikova, M. I. C. Gonzalez, A. Popov, Effect of Natural Rubber in Polyethylene Composites on Morphology, Mechanical Properties and Biodegradability Polymers, 12, 437 (2020) DOI: 10.3390/polym12020437 [Google Scholar]
  30. E. Olewnik-Kruszkowska, I. Koter, J. Skopińska-Wiśniewska, J. Richert, Degradation of polylactide composites under UV irradiation at 254nm Journal of Photochemistry and Photobiology A, 311, 144-153 (2015) doi: 10.1016/j.jphotochem.2015.06.029 [Google Scholar]
  31. A. A. Marek, V. Verney, Photochemical reactivity of PLA at the vicinity of glass transition temperature. The photo-rheology method European Polymer Journal, 81, 239-246 (2016) doi: 10.1016/j.eurpolymj.2016.06.016 [CrossRef] [Google Scholar]
  32. Y. V. Tertyshnaya, M. V. Podzorova, M. N. Moskovskiy, Impact of Water and UV Irradiation on Non-Woven Polylactide/Natural Rubber Fiber Polymers, 13, 461 (2021) doi: 10.3390/polym13030461 [Google Scholar]
  33. S. Lv, X. Liu, J. Gu, Y. Jiang, H. Tan, Y. Zhang, Effect of glycerol introduced into PLA based composites on the UV weathering behavior Construction and Building Materials, 144, 525-531 (2017) doi: 10.1016/j.conbuildmat.2017.03.209 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.