Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01226
Number of page(s) 12
DOI https://doi.org/10.1051/e3sconf/202343001226
Published online 06 October 2023
  1. F. S. Al-Duais, A. Mohamed, T. M. Jawa, & N. Sayed-Ahmed (2022). Optimal Periods of Conducting Preventive Maintenance to Reduce Expected Downtime and Its Impact on Improving Reliability. Computational Intelligence and Neuroscience, 2022. [Google Scholar]
  2. E. I. Basri, I. H. A. Razak, H. Ab-Samat, & S. Kamaruddin Preventive maintenance (PM) planning: a review. Journal of Quality in Maintenance Engineering, 23(2), 114-143, (2017). [CrossRef] [Google Scholar]
  3. F. Sgarbossa, I. Zennaro, E. Florian, & M. Calzavara, Age replacement policy in the case of no data: the effect of Weibull parameter estimation. International Journal of Production Research, 58(19), 5851-5869, (2020). [CrossRef] [Google Scholar]
  4. X. Pan, & Z. Wu, Performance shaping factors in the human error probability modification of human reliability analysis. International Journal of Occupational Safety and Ergonomics, 26(3), 538-550, (2020). [CrossRef] [PubMed] [Google Scholar]
  5. Z. Matuszak, M. Jaśkiewicz, D. Więckowski, & J. Stokłosa Remarks to the reliability assessment and to human actions–especially car driver. In MATEC Web of Conferences (Vol. 134, p. 00036). EDP Sciences, (2017). [Google Scholar]
  6. F. Sgarbossa, I. Zennaro, E. Florian, & A. Persona, Impacts of weibull parameters estimation on preventive maintenance cost. IFAC-PapersOnLine, 51(11), 508-513, (2018). [CrossRef] [Google Scholar]
  7. W. Gao, H. Ji, Y. Wang, & T. Yang, A nonlinear preventive maintenance model with an environmental factor-based Weibull distribution. In IOP conference series: materials science and engineering (Vol. 521, No. 1, p. 012009), (2019, May). IOP Publishing. [Google Scholar]
  8. L. Zhu, M. Shan, & B. G. Hwang, Overview of design for maintainability in building and construction research. Journal of Performance of Constructed Facilities, 32(1), 04017116, (2018). [CrossRef] [Google Scholar]
  9. Y. L. M. CHEW, A. Asmone, & S. Conejos, Design for maintainability: benchmarks for quality buildings, (2018). [Google Scholar]
  10. I. A. Khalek, J. Chalhoub, & S. K. Ayer, Indicators of effective design for maintainability in conceptual design. In AEI 2019: Integrated Building Solutions—The National Agenda (pp. 309-315). Reston, VA: American Society of Civil Engineers, (2019). [Google Scholar]
  11. D. Galar, , & M. Kans, (2017). The impact of maintenance 4.0 and big data analytics within strategic asset management. In Maintenance Performance and Measurement and Management 2016 (MPMM 2016). November 28, Luleå, Sweden (pp. 96-104). Luleå tekniska universitet. [Google Scholar]
  12. J. Nagy, J. Oláh, E. Erdei, D. Máté, & J. Popp (2018). The role and impact of Industry 4.0 and the internet of things on the business strategy of the value chain—the case of Hungary. Sustainability, 10(10), 3491. [Google Scholar]
  13. M. P. Brundage, T. Sexton, M. Hodkiewicz, K. C. Morris, J. Arinez, F. Ameri, ... & G. Xiao, (2019, June). Where do we start? Guidance for technology implementation in maintenance management for manufacturing. In International Manufacturing Science and Engineering Conference (Vol. 58745, p. V001T02A016). American Society of Mechanical Engineers. [Google Scholar]
  14. M. Navinchandran, M. E. Sharp, M. P. Brundage, & T. B. Sexton, (2019, September). Studies to predict maintenance time duration and important factors from maintenance workorder data. In Proceedings of the Annual Conference of the PHM Society (Vol. 11). [Google Scholar]
  15. A. Thawkar, P. Tambe, & V. Deshpande (2018). A reliability centred maintenance approach for assessing the impact of maintenance for availability improvement of carding machine. International Journal of Process Management and Benchmarking, 8(3), 318-339. [CrossRef] [Google Scholar]
  16. F. Sgarbossa, I. Zennaro, E. Florian, & A. Persona, (2018). Impacts of weibull parameters estimation on preventive maintenance cost. IFAC-PapersOnLine, 51(11), 508-513. [CrossRef] [Google Scholar]
  17. G. W. Vogl, B. A. Weiss, & M. Helu, (2019). A review of diagnostic and prognostic capabilities and best practices for manufacturing. Journal of Intelligent Manufacturing, 30, 79-95. [CrossRef] [PubMed] [Google Scholar]
  18. J. B. Wood, M. I. Mazhar, & I. Howard, (2023). An Investigation into Bearing Fault Diagnostics for Condition Based Maintenance Using Band–Pass Filtering and Wavelet Decomposition Analysis of Vibration Signals. In Journal of Physics: Conference Series (Vol. 2467, p. 012017). [CrossRef] [Google Scholar]
  19. T. K. Agustiady, & E. A. Cudney, (2018). Total productive maintenance. Total Quality Management & Business Excellence, 1-8. [Google Scholar]
  20. P. H. Tsarouhas, (2020). Overall equipment effectiveness (OEE) evaluation for an automated ice cream production line: A case study. International Journal of Productivity and Performance Management, 69(5), 1009-1032. [Google Scholar]
  21. O. Bataineh, T. Al-Hawari, H. Alshraideh, & D. Dalalah, (2019). A sequential TPM-based scheme for improving production effectiveness presented with a case study. Journal of Quality in Maintenance Engineering, 25(1), 144-161. [CrossRef] [Google Scholar]
  22. https://www.iienstitu.com/en/blog/achieving-reliable-delivery-performance-in-logistics-management [Google Scholar]
  23. C. Tikkinen-Piri, A. Rohunen, & J. Markkula, (2018). EU General Data Protection Regulation: Changes and implications for personal data collecting companies. Computer Law & Security Review, 34(1), 134-153. [CrossRef] [Google Scholar]
  24. M. A. Cohen, & P. Kouvelis, (2021). Revisit of AAA excellence of global value chains: Robustness, resilience, and realignment. Production and Operations Management, 30(3), 633-643. [CrossRef] [Google Scholar]
  25. P. Poór, J. Basl, & D. Zenisek, (2019, March). Predictive Maintenance 4.0 as next evolution step in industrial maintenance development. In 2019 international research conference on smart computing and systems engineering (SCSE) (pp. 245-253). IEEE. [Google Scholar]
  26. https://scal-academy.com.sg/courses/course_detail/361 [Google Scholar]
  27. G. Dess, A. Eisner, G. T. Lumpkin, & G. McNamara, (2019). Strategic Management: Creating Competitive Advantages, 9e. [Google Scholar]
  28. A. Rotshtein, D. Katielnikov, & A. Kashkanov (2019). A fuzzy cognitive approach to ranking of factors affecting the reliability of man–machine systems. Cybernetics and Systems Analysis, 55, 958-966. [CrossRef] [Google Scholar]
  29. F. Immovilli, A. Bellini, R. Rubini, & C. Tassoni (2010). Diagnosis of bearing faults in induction machines by vibration or current signals: A critical comparison. IEEE Transactions on Industry Applications, 46(4), 1350-1359. [CrossRef] [Google Scholar]
  30. F. A. Souza, P. C. Pereira, H. De Paula, J. C. Braz Filho, & A. V. Rocha (2014, October). Motor drive systems reliability: Impact of the environment conditions on the electronic component failure rates. In 2014 IEEE Industry Application Society Annual Meeting (pp. 1-8). IEEE. [Google Scholar]
  31. B. Wang, T. Rui, J. Koslosky, J. Fedele, S. Balar, L. W. Hertzler, & B. Poplin (2013). Evidence-based maintenance: part IV—comparison of scheduled inspection procedures. Journal of Clinical Engineering, 38(3), 108-116. [CrossRef] [Google Scholar]
  32. F. T. S. Chan, H. C. W. Lau, R. W. L. Ip, H. K. Chan, & S. Kong (2005). Implementation of total productive maintenance: A case study. International journal of production economics, 95(1), 71-94. [CrossRef] [Google Scholar]
  33. R. M. Daly, S. L. Bass, & C. F. Finch (2001). Balancing the risk of injury to gymnasts: how effective are the counter measures?. British Journal of Sports Medicine, 35(1), 8-19. [CrossRef] [PubMed] [Google Scholar]
  34. E. Calixto (2016). Gas and oil reliability engineering: modeling and analysis. Gulf Professional Publishing. [Google Scholar]
  35. B. Schroeder, E. Pinheiro, & W. D. Weber (2009). DRAM errors in the wild: a large-scale field study. ACM SIGMETRICS Performance Evaluation Review, 37(1), 193-204. [CrossRef] [Google Scholar]
  36. S. Bagavathiappan, B. B. Lahiri, T. Saravanan, J. Philip, & T. Jayakumar (2013). Infrared thermography for condition monitoring–A review. Infrared Physics & Technology, 60, 35-55. [CrossRef] [Google Scholar]
  37. K. Feng, J. C. Ji, Q. Ni, & M. Beer (2023). A review of vibration-based gear wear monitoring and prediction techniques. Mechanical Systems and Signal Processing, 182, 109605. [CrossRef] [Google Scholar]
  38. T. Wireman (2005). Developing performance indicators for managing maintenance. Industrial Press Inc.. [Google Scholar]
  39. A. K. Jardine, D. Lin, & D. Banjevic (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical systems and signal processing, 20(7), 1483-1510. [CrossRef] [Google Scholar]
  40. B. S. Dhillon (2006). Maintainability, maintenance, and reliability for engineers. CRC press. [CrossRef] [Google Scholar]
  41. M. C. Eti, S. O. T. Ogaji, & S. D. Probert (2006). Reducing the cost of preventive maintenance (PM) through adopting a proactive reliability-focused culture. Applied energy, 83(11), 1235-1248. [CrossRef] [Google Scholar]
  42. I. Bolvashenkov, & H. G. Herzog (2015, June). Approach to predictive evaluation of the reliability of electric drive train based on a stochastic model. In 2015 International Conference on Clean Electrical Power (ICCEP) (pp. 486-492). IEEE. [Google Scholar]
  43. M. A. Tarar (2014, March). Study reliability centered maintenance (RCM) of rotating equipment through predictive maintenance. In Proceedings of the 2nd International Conference on Research in Science, Engineering and Technology (ICRSET’2014), Dubai, UAE (pp. 21-22). [Google Scholar]
  44. P. Gackowiec (2019). General overview of maintenance strategies–concepts and approaches. Multidisciplinary Aspects of Production Engineering, 2(1), 126-139. [CrossRef] [Google Scholar]
  45. A. E. Brown (2022). The influence of design decision-making on the lifecycle of equipment (Doctoral dissertation, University of Johannesburg). [Google Scholar]
  46. B. M. Alghamdi (2021). An efficient embedded detection scheme for bearing condition monitoring (Doctoral dissertation, University of Southampton). [Google Scholar]
  47. J. Kusters (2019). Exploring improved maintenance strategies of railway registration systems at the intersection of principal-agent theory and economic relevance: A case study. [Google Scholar]
  48. A. N. Huda, & S. Taib, (2013). Application of infrared thermography for predictive/preventive maintenance of thermal defect in electrical equipment. Applied Thermal Engineering, 61(2), 220-227. [CrossRef] [Google Scholar]
  49. K. B. BAGSHAW (2017). A review and analysis of plant maintenance and replacement strategies of manufacturing firms in Nigeria. African Journal of Business Management, 11(2), 17-26. [CrossRef] [Google Scholar]
  50. https://coastapp.com/blog/preventive-maintenance/ [Google Scholar]
  51. K. K. Swe, Z. THAUNG, & K. M. MOE, (2019). Maintenance Management Plan of Heavy Machinery. IRE Journals, 3(2), 1-9. [Google Scholar]
  52. D. Prabhakar, & V. J. Raj (2014). CBM, TPM, RCM and A-RCM-a qualitative comparison of maintenance management strategies. International Journal of Management & Business Studies, 4(3), 49-56. [Google Scholar]
  53. J. Fernandes, J. Reis, N. Melão, L. Teixeira, , & M. Amorim (2021). The role of Industry 4.0 and BPMN in the arise of condition-based and predictive maintenance: A case study in the automotive industry. Applied Sciences, 11(8), 3438. [CrossRef] [Google Scholar]
  54. C. Ogbonnaya, C. Abeykoon, A. Nasser, & A. Turan (2021). A computational approach to solve a system of transcendental equations with multi-functions and multi-variables. Mathematics, 9(9), 920. [CrossRef] [Google Scholar]
  55. M. Pech, J. Vrchota, & J. Bednář (2021). Predictive maintenance and intelligent sensors in smart factory. Sensors, 21(4), 1470. [CrossRef] [PubMed] [Google Scholar]
  56. https://www.reliableplant.com/Read/12495/preventive-predictive-maintenance [Google Scholar]
  57. https://www.istec.com/en/condition-monitoring-rotating-machines/ [Google Scholar]
  58. M. Kans, J. Campos, & L. Håkansson (2020). A remote laboratory for Maintenance 4.0 training and education. IFAC-PapersOnLine, 53(3), 101-106. [CrossRef] [Google Scholar]
  59. https://safetyculture.com/topics/proactive-maintenance/ [Google Scholar]
  60. https://biblus.accasoftware.com/en/what-is-proactive-maintenance-3-key-examples/ [Google Scholar]
  61. https://biblus.accasoftware.com/en/wp-content/uploads/sites/2/2023/01/FLOWCHART_proactive-maintenance.jpg.webp [Google Scholar]
  62. https://biblus.accasoftware.com/en/wp-content/uploads/sites/2/2023/01/proactive-maintenance-examples.jpg [Google Scholar]
  63. C. Lundgren, A. Skoogh, & J. Bokrantz (2018). Quantifying the effects of maintenance–a literature review of maintenance models. Procedia CIRP, 72, 1305-1310. [CrossRef] [Google Scholar]
  64. A. Jain, R. Bhatti, H. S. Deep, & S. K. Sharma, (2012). Implementation of TPM for enhancing OEE of small scale industry. International Journal of IT, Engineering and Applied Sciences Research, 1(1), 125-136. [Google Scholar]
  65. F. T. S. Chan, H. C. W. Lau, R. W. L. Ip, H. K. Chan, & S. Kong, (2005). Implementation of total productive maintenance: A case study. International journal of production economics, 95(1), 71-94. [CrossRef] [Google Scholar]
  66. P. Tsarouhas (2007). Implementation of total productive maintenance in food industry: a case study. Journal of Quality in Maintenance Engineering, 13(1), 5-18. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.