Open Access
Issue
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
Article Number 01227
Number of page(s) 11
DOI https://doi.org/10.1051/e3sconf/202343001227
Published online 06 October 2023
  1. Y. Hu, Y. Liu, Z. Wang, J. Wen, J. Li, & J. Lu, A two-stage dynamic capacity planning approach for agricultural machinery maintenance service with demand uncertainty. Biosystems engineering, 190, 201-217 (2020) [CrossRef] [Google Scholar]
  2. D. D. Bochtis, C. G. Sørensen, & P. Busato, Advances in agricultural machinery management: A review. Biosystems engineering, 126, 69-81 (2014) [CrossRef] [Google Scholar]
  3. I, Bakir, M. Yildirim, & E, Ursavas, An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance. Renewable and Sustainable Energy Reviews, 138, 110639 (2021) [CrossRef] [Google Scholar]
  4. I, El-Thalji, & J. P. Liyanage, On the operation and maintenance practices of wind power asset: A status review and observations. Journal of Quality in Maintenance Engineering, 18(3), 232-266 (2012) [CrossRef] [Google Scholar]
  5. B. R. Sarker, & T. I. Faiz. Minimizing maintenance cost for offshore wind turbines following multi-level opportunistic preventive strategy. Renewable energy, 85, 104-113 (2016) [CrossRef] [Google Scholar]
  6. M. L. Wymore, J. E. Van Dam, H. Ceylan, & D. Qiao, A survey of health monitoring systems for wind turbines. Renewable and Sustainable Energy Reviews, 52, 976-990 (2015) [CrossRef] [Google Scholar]
  7. G. D. N. P. Leite, A. M. Araújo, & P. A. C. Rosas, Prognostic techniques applied to maintenance of wind turbines: a concise and specific review. Renewable and Sustainable Energy Reviews, 81, 1917-1925 (2018) [CrossRef] [Google Scholar]
  8. J. Izquierdo, A. C. Márquez, J. Uribetxebarria, & A. Erguido, On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects. Renewable Energy, 153, 1100-1110 (2020) [CrossRef] [Google Scholar]
  9. P. Zhou, & P. T. Yin, An opportunistic condition-based maintenance strategy for offshore wind farm based on predictive analytics. Renewable and Sustainable Energy Reviews, 109, 1-9 (2019) [CrossRef] [Google Scholar]
  10. C. Zhang, & T. Yang, Optimal maintenance planning and resource allocation for wind farms based on non-dominated sorting genetic algorithm-ΙΙ. Renewable Energy, 164, 1540-1549 (2021) [CrossRef] [Google Scholar]
  11. A. E. Ruiz, A. C. Márquez, E. Castellano, & J. F. G. Fernández, A Dynamic Opportunistic Maintenance Model to Maximize Energy-Based. Value Based and Intelligent Asset Management: Mastering the Asset Management Transformation in Industrial Plants and Infrastructures, 259 (2019) [Google Scholar]
  12. J. Izquierdo, A. Crespo Márquez, J. Uribetxebarria, & A. Erguido, Framework for managing maintenance of wind farms based on a clustering approach and dynamic opportunistic maintenance. Energies, 12(11), 2036 (2019) [CrossRef] [Google Scholar]
  13. Y. Merizalde, L. Hernández-Callejo, O. Duque-Perez, & V. Alonso-Gómez, Maintenance models applied to wind turbines. A comprehensive overview. Energies, 12(2), 225 (2019) [CrossRef] [Google Scholar]
  14. S. T. Kandukuri, A. Klausen, H. R. Karimi, & K. G. Robbersmyr, A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management. Renewable and Sustainable Energy Reviews, 53, 697-708 (2016) [CrossRef] [Google Scholar]
  15. P. Nguyen, M. Kang, J. Kim, & J. M. Kim, Reliable fault diagnosis of low-speed bearing defects using a genetic algorithm. In PRICAI 2014: Trends in Artificial Intelligence: 13th Pacific Rim International Conference on Artificial Intelligence, Gold Coast, QLD, Australia, December 1-5, 2014. Proceedings 13 (pp. 248-255). Springer International Publishing (2014) [Google Scholar]
  16. M. Jaumann, E. Olcay, & T. Oksanen, Condition Monitoring using Convolutional Neural Network in Agricultural Machinery-Use Case: Disc Mower. IFAC-PapersOnLine, 55(32), 235-240 (2022) [CrossRef] [Google Scholar]
  17. M. Xiang, S. Wei M. Zhang, & M. Z. Li, Real-time monitoring system of agricultural machinery operation information based on ARM11 and GNSS. IFAC-PapersOnLine, 49(16), 121-126 (2016) [CrossRef] [Google Scholar]
  18. G. Craessaerts, J. De Baerdemaeker, & W. Saeys, Fault diagnostic systems for agricultural machinery. Biosystems Engineering, 106(1), 26-36 (2010) [CrossRef] [Google Scholar]
  19. C. Li, L. Mo, H. Tang, & R. Yan, Lifelong condition monitoring based on NB-IoT for anomaly detection of machinery equipment. Procedia Manufacturing, 49, 144-149 (2020) [CrossRef] [Google Scholar]
  20. Z. Qiu, G. Shi, B. Zhao, X. Jin, & L. Zhou, Combine harvester remote monitoring system based on multi-source information fusion. Computers and Electronics in Agriculture, 194, 106771 (2022) [CrossRef] [Google Scholar]
  21. J. Wheat, & A. Leali, Hazard monitoring equipment selection, installation, and maintenance. In Storage of Cereal Grains and Their Products (pp. 371-405). Woodhead Publishing (2022) [CrossRef] [Google Scholar]
  22. X. Fu, & H. Niu, Key technologies and applications of agricultural energy internet for agricultural planting and fisheries industry. Information Processing in Agriculture (2022) [Google Scholar]
  23. K. Plizga, Analysis of energy consumption by electric agricultural tractor model under operating conditions. Agricultural Engineering, 25(1), 1-12 (2021) [CrossRef] [Google Scholar]
  24. 24 J. Machleb, G. G. Peteinatos, M. Sökefeld, & R. Gerhards, Sensor-based intrarow mechanical weed control in sugar beets with motorized finger weeders. Agronomy, 11(8), 1517 (2021) [CrossRef] [Google Scholar]
  25. R. Hou, S. Li, H. Chen, G. Ren, W. Gao, & L. Liu, Coupling mechanism and development prospect of innovative ecosystem of clean energy in smart agriculture based on blockchain. Journal of Cleaner Production, 319, 128466 (2021) [CrossRef] [Google Scholar]
  26. X. Yang, L. Shu, J. Chen, M. A. Ferrag, J. Wu, E. Nurellari, & K. Huang, A survey on smart agriculture: Development modes, technologies, and security and privacy challenges. IEEE/CAA Journal of Automatica Sinica, 8(2), 273-302 (2021) [CrossRef] [Google Scholar]
  27. Y. Hu, S. Xiao, J. Wen, & J. Li, An ANP-multi-criteria-based methodology to construct maintenance networks for agricultural machinery cluster in a balanced scorecard context. Computers and electronics in agriculture, 158, 1-10 (2019) [CrossRef] [Google Scholar]
  28. C. Wu, D. Li, X. Zhang, J. Pan, L. Quan, L. Yang, & W. Zhai, Application note: China’s agricultural machinery operation big data system. Computers and Electronics in Agriculture, 205, 107594 (2023) [CrossRef] [Google Scholar]
  29. B. Qiu, Y. Zhang, H. Shen, J. Zhou, & L. Chu. Ergonomic researches in agricultural machinery-a systematic review using the PRISMA method. International Journal of Industrial Ergonomics, 95, 103446 (2023) [CrossRef] [Google Scholar]
  30. D. Li, Y. Zheng, & W. Zhao, Fault analysis system for agricultural machinery based on big data. Ieee Access, 7, 99136-99151 (2019) [CrossRef] [Google Scholar]
  31. K. Zhou, Z. Ni, Y. Yin, B. Yang, T. Li, & J. Hou, Study of the strategy for agricultural machinery maintenance in China based on the improved genetic-bee colony algorithm. Journal of Ambient Intelligence and Humanized Computing, 14(3), 2275-2289 (2023) [CrossRef] [Google Scholar]
  32. Q. Zhou, J. Jiang, Z. Zhao, J. Zhong, B. Pan, X. Jin, & Y. Sun, Research on the Internet of Things Platform Design for Agricultural Machinery Operation and Operation Management. In Computer and Computing Technologies in Agriculture XI: 11th IFIP WG 5.14 International Conference, CCTA 2017, Jilin, China, August 12-15, 2017, Proceedings, Part II 11 (pp. 400-410). Springer International Publishing (2019) [Google Scholar]
  33. G. R. Narasimhan, Y. Peng, T. G. Crowe, L. Hagel, J. Dosman, & W. Pickett, Operational safety practices as determinants of machinery-related injury on Saskatchewan farms. Accident Analysis & Prevention, 42(4), 1226-1231 (2010) [CrossRef] [Google Scholar]
  34. Y. Yao, J. Wen, X. Zhen, & Y. Hu, A location-allocation model of maintenance resources based on fault distribution for agricultural machinery maintenance service network. Procedia CIRP, 104, 393-398 (2021) [CrossRef] [Google Scholar]
  35. J. Han, Y. Hu, M. Mao, & S. Wan, A multi-objective districting problem applied to agricultural machinery maintenance service network. European Journal of Operational Research, 287(3), 1120-1130 (202) [Google Scholar]
  36. J. R. Schmidt, & F. A. Cheein, Assessment of power consumption of electric machinery in agricultural tasks for enhancing the route planning problem. Computers and Electronics in Agriculture, 163, 104868 (2019) [CrossRef] [Google Scholar]
  37. L. F. Rodrigues, R. Morabito, F. Y. Chiyoshi, A. P. Iannoni, & C. Saydam, Analyzing an emergency maintenance system in the agriculture stage of a Brazilian sugarcane mill Computers and electronics in agriculture, 151, 441-452 (2018) [CrossRef] [Google Scholar]
  38. R. Manivannan, R. Rajasekar, B. Mathan, S. Jagankumar, & M. Gurumurthy, Modelling and analysis of agriculture three in one machine using solar power. Materials Today: Proceedings, 64, 506-510 (2022) [CrossRef] [Google Scholar]
  39. E. Volkova, & N. Smolyaninova, Trends in Russian exports and imports of agricultural machinery. Transportation Research Procedia, 63, 1131-1138 (2022) [CrossRef] [Google Scholar]
  40. C. I. P. Martínez, & A. C. Poveda, Characterization of cooling equipment in the food industry: Case study of the Colombian meat, dairy, and fruit and vegetable sectors. Environmental Development, 41, 100693 (2022) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.